




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
个性化辅导讲义学生: 科目: 数 学 教师: 刘美玲 课 题中考总复习 : 三角形基本性质、 特殊三角形教学内容 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;_C_B_A(3)ABC是三角形ABC的符号标记,单独的没有意义三角形等腰三角形不等边三角形底边和腰不相等的等腰三角形等边三角形 三角形的分类: (1)按边分类:三角形直角三象形斜三角形锐角三角形钝角三角形 (2)按角分类: 三角形的主要线段的定义:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1.AD是ABC的BC上的中线.2.BD=DC=BC.注意:三角形的中线是线段;三角形三条中线全在三角形的内部;三角形三条中线交于三角形内部一点;中线把三角形分成两个面积相等的三角形(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD是ABC的BAC的平分线.2.1=2=BAC.注意:三角形的角平分线是线段;三角形三条角平分线全在三角形的内部;三角形三条角平分线交于三角形内部一点;用量角器画三角形的角平分线(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段表示法:1.AD是ABC的BC上的高线.2.ADBC于D.3.ADB=ADC=90.注意:三角形的高是线段;锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;三角形三条高所在直线交于一点4. 在画三角形的三条角平分线,三条中线,三条高时应注意: (1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. (2)如图4,三角形的三条中线交点一点,交点都在三角形内部.图4图3如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形直角顶上.图5图6图75.三角形的三边关系 三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边6. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180推论:直角三角形的两个锐角互余。三角形的外角的定义三角形一边与另一边的延长线组成的角,叫做三角形的外角.注意:每个顶点处都有两个外角,但这两个外角是对顶角. 所以说一个三角形有六个外角,但我们每个顶点处只选一个外角,这样三角形的外角就只有三个了.三角形外角的性质(1)三角形的外角和等于360(三个外角的和)。(2)三角形的一个外角等于它不相邻的两个内角之和(3)三角形的一个角大于与它不相邻的任何一个内角7三角形的稳定性:三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性注意:(1)三角形具有稳定性;图8(2)四边形没有稳定性.适当添加辅助线,寻找基本图形(1)基本图形一,如图8,在DABC中,AB=AC,B,A,D成一条直线,则DAC=2B=2C或B=C=DAC.图9(2)基本图形二,如图9,如果CO是AOB的角平分线,DEOB交OA,OC于D,E,那么DDOE是等腰三角形,DO=DE.当几何问题的条件和结论中,或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.即:角平分线+平行线等腰三角形.基本图形三,如图10,如果BD是ABC的角平分线,M是AB上一点,MNBD,且与BP,BC相交于P,N.那么BM=BN,即DBMN是等腰三角形,且MP=NP,即:角平分线+垂线等腰三角形.当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基本图形,如等腰三角形不完整就应将基本图形补完整,如图11,图12. 图118.三角形知识扩充:1直角三角形中各元素间的关系:如图,在ABC中,C90,ABc,ACb,BCa。(1)三边之间的关系:a2b2c2。(勾股定理)(2)锐角之间的关系:AB90;(3)边角之间的关系:(锐角三角函数定义)sinAcosB,cosAsinB,tanA。2斜三角形中各元素间的关系:如图6-29,在ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。(1)三角形内角和:ABC。(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍a2b2c22bccosA;b2c2a22cacosB;c2a2b22abcosC。9三角形的面积公式:(1)Sahabhbchc(ha、hb、hc分别表示a、b、c上的高);(2)SabsinCbcsinAacsinB;(3)S;(海伦公式)(4)S;公式(4)可由公式(2)通过正玄定理 和 公式“ Sin(B+C)=SinA ”推出,学生可以自己推导。 公式(1)和(2)学生必须掌握,公式(3)和(4)建议掌握。10.特殊三角形的性质和判定:一、等腰三角形1. 有两条边相等的三角形叫做等腰三角形;三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形。 2. 等腰三角形的性质: (1)等腰三角形的两个底角相等; (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 3. 等腰三角形的判定: 如果一个三角形有两个角相等,那么这两个角所对的边也相等。 4. 等边三角形的性质: 等边三角形的三个内角都相等,并且每一个角都等于60。 5. 等边三角形的判定: (1)三个角都相等的三角形是等边三角形; (2)有一个角是60的等腰三角形是等边三角形。 6. 含30角的直角三角形的性质: 在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半。二、直角三角形 1. 认识直角三角形。学会用符号和字母表示直角三角形。 按照角的度数对三角形进行分类:如果三角形中有一个角是直角,那么这个三角形叫直角三角形。通常用符号“Rt”表示“直角三角形”,其中直角所对的边称为直角三角形的斜边,构成直角的两边称为直角边。如果ABC是直角三角形,习惯于把以C为顶点的角当成直角。用三角A、B、C对应的小写字母a、b、c分别表示三个角的对边。 如果ABAC且A90,显然这个三角形既是等腰三角形,又是直角三角形,我们称之为等腰直角三角形。 2. 掌握“直角三角形两个锐角互余”的性质。会运用这一性质进行直角三角形中的角度计算以及简单说理。 3. 会用“两个锐角互余的三角形是直角三角形”这个判定方法判定直角三角形。 4. 掌握“直角三角形斜边上中线等于斜边的一半”性质。能通过操作探索出这一性质并能灵活应用。5在直角三角形中如果一个锐角是30,则它所对的直角边等于斜边的一半”。难点:在直角三角形中如何正确添加辅助线 通常有两种辅助线:斜边上的高线和斜边上的中线。【例题精讲】 等腰三角形双基训练*1.已知等腰三角形ABC的底边BC=8,|AC-BC|=3,则腰AC的长为 。*二.若等腰三角形的周长为12,腰长为x,则腰长x的取值范围是 。*三.已知等腰三角形一腰上的中线把这个三角形的周长分为15和6两部分,则腰长与底边的长分别为 。*四.若等腰三角形一腰上的高等于腰长的一半,则这条高与底边的夹角为 。*五.在ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为500,则底角B的大小为 。*六.已知两根木棒的长分别是8cm、10cm,要选择第三根木棒将它们钉成一个三角形,那么第三根木棒长x的范围是 ;如果以5cm为等腰三角形的一边,另一边为10cm,则它的周长应为 。*7.图14-32是由两个全等的有一个角为300的直角三角形拼成的,其中,两条长直角边在同一直线上,则图中等腰三角形的个数自变量( )。 (A)4个 (B)3个 (C)2个 (D)1个 *八.若等腰三角形一腰上的高与另一腰的夹角为300,腰长为a,则其底边上的高是 。纵向应用*1.如图14-33,在ABC中,D、E分别是AC、AB边上的点,BD与CE交于点O,给出下列四个条件:EBO=DCO;BEO=CDO;BE=CD;OB=OC。 (1)上述四个条件中,哪两个条件可判定ABC是等腰三角形(用序号写出所有情形)? (2)选择第(1)小题中的一种情形,证明:ABC是等腰三角形。*二.如图14-34,已知1=2,EFAD于点P,交BC延长线于点M,求证:BME=(ACB-B).*三.如图14-35,在RtABC中,C=900,ADBC,CBE=ABE。求证:ED=2AB *四.如图14-36,在ABC中,AB=AC,CM是边AB上的中线,BD=AB,求证:CD=2CM*五.如图14-37,在ABC中,AD是A的平分线,CDAD,垂足为D,G为BC的中点,求证:DGC=B。*6. 如图14-38,已知等边ABC的周长为6,BD是AC边上的高,E是BC延长线上一点,CD=CE,求BDE的周长。*7. 如图14-39,已知AB=AC,BD、CE分别是B、C的平分线,AMBD于点M,ANCE于点N,求证:AMN是等腰三角形。横向拓展*一. 已知等腰三角形三边的长为a、b、c且a=c,若关于x的一元二次方程ax2-bx+c=0的两根之差为,则等腰三角形的一个底角是( )。 (A)150 (B)300 (C)450 (D)600*2. 已知ABC的两边AB、AC的长是关于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的两个实数根,第三边BC的长为5。 (1)k为何值时,ABC是以BC为斜边的直角三角形? (2)k为何值时,ABC是等腰三角形?并求出ABC的周长。*三. 如图14-40,已知等边ABC边BA延长线上有一点D,BC延长线上有一点E,且AD=BE,求证:DC=DE。*四. 如图14-41,在ABC中,AB=AC,D为ABC外一点ABD=600,ADB=900-BDC,求证:AB-BD=DC。*5. 如图14-42,ABD=ACD=600,ADB=900-BDC,求证:ABC是等腰三角形。*六. 如图14-43,已知线段b、c和ma,求作ABC,使AB=c,AC=b,BC边上的中线AD=ma.*七.如图14-44,在等腰三角形ABC的一腰AB上取一点D,在另一腰AC的延长线上取CE=BD,连DE,则DEBC. 等边三角形双基训练*三.如图14-47,在等边ABC中,AE=CD,BGAD,求证:BP=2PG。纵向应用*1.如图14-48,已知等边ABC的ABC、ACB的平分线交于O点,若BC上的点E、F分别在OB、OC垂直平分线上,试说明EF与AB的关系,并加以证明。*二. 如图14-49,C是线段AB上的一点,ACD和BCE是两个等边三角形,点D、E在AB同旁,AE交CD于点G,BD交CE于点H,求证:GHAB。*三. 如图14-50,已知ABC是等边三角形,E是AC延长线上一点,选择一点D使得CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:CMN是等边三角形。*八. 如图14-55,在等腰梯形ABCD中,ABCD,ABCD,AD=BC,对角线AC、BD交于点O,AOB=600,且E、F分别是OD、OA的中点,M是BC的中点,求证:EFM是等边三角形。p.117*9. 如图14-56,在ABCD中,ABE和BCF都是等边三角形,求证:DEF是等边三角形。*十.如图14-57,已知D为等边ABC内一点,DA=DC,P点在ABC外,且CP=CA,CD平分PCB,求P。横向拓展*1. 如图14-58,已知P是等边三角形ABC内一点,APB:CPA=5:6:7,求以PA、PB、PC为边长的三角形的三内角之比。*三.如图14-60,已知ABC是边长为1的等边三角形,BDC是顶角BDC为1200的等腰三角形,以点D为顶点作一个600角的两边分别交AB于点M,交AC于点N,连结MN,形成一个三角形。求证:AMN的周长等于2。*四.如图14-61,在ABC中,A=600,BEAC,垂足为E,CFAB,垂足为F,点D是BC的中点,BE、CF交于点M。 (1)如果AB=AC,求证:DEF是等边三角形; (2)如果ABAC,试猜想DEF是不是等边三角形?如果DEF是等边三角形,请加以证明;如果DEF不是等边三角形,请说明理由; (3)如果CM=4cm,FM=5cm,求BE的长度。直角三角形双基训练*二.如图14-65,AD是ABC的中线,ADC=450,把ADC沿AD对折,点C落在点C的位置,则BC与BC之间的数量关系是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年特色农产品冷链仓储中心建设可行性研究报告:技术创新与食品安全
- 年产充气橡皮艇2000台和充气浆板1000件新建项目环评报告表
- 2025年初级中学消防试卷及答案
- 脚手安全培训结束语课件
- 小学生的套路试卷及答案
- 通风工程承包方案范本(3篇)
- 脊柱矫形护理查房课件
- 2025物业租赁融资合同
- 工程成本审计实施方案(3篇)
- 车间安全培训内容记录课件
- 公务员面试人际关系题人际关系面试题及答案
- 酷家乐教学课件下载
- 2025年乡镇畜牧站动物检疫员招聘考试重点知识点梳理与解析
- 2025年中国电信招聘考试题库与答案解析
- 土地合作协议书合同模板
- 2025-2030中国废弃光伏组件回收处理技术路线与经济性分析报告
- 2025至2030年中国鹿茸药品行业市场发展现状及投资方向研究报告
- 2025水利安全员C证考试题库(含答案)
- Unit 1 This is me!第5课时 Integration 说课稿- 2024-2025学年译林版(2024)七年级上册英语
- 一级建造师-机电工程管理与实务-案例专题突破教学课件
- 新沪教牛津版九年级上册英语全册教案
评论
0/150
提交评论