



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
选修2-1 第一章 常用逻辑用语 知识点详解1.1 命题及其关系1. 定义:一般地,我们用语言、符号或式子表达的,可以判断真假的陈述句,叫做命题;其中判断为正确的命题,为真命题;判断为不正确的命题,为假命题。2. 辨析:能够分辨哪一个是命题及其真假判断一个语句是否是命题,关键在于能否判断其真假。语句可分为疑问句、祈使句、感叹句与陈述句。一般的,只有陈述句能分辨真假,其他类型的句子无所谓真假,我们把每个能分辨真假的陈述句作为一个命题。对于一个句子,有时我们可能无法判断其真假,但对这个句子却是有真假的,如:“太阳系外存在外星人”,对于这个句子所描述的情形,目前确定其真假,但从事物的本质而言,句子本身是可以判断其真假的。这类语句也称为命题。语句是不是命题,关键在于能不能判断其真假,也就是判断其是否成立。不判断真假的语句,就不能叫命题。“X2”。3.原命题与逆命题即在两个命题中,如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题;如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题.4. 否命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题就叫做互否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.5. 原命题与逆否命题即在两个命题中,一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题就叫做互为逆否命题,若把其中一个命题叫做原命题,则另一个就叫做原命题的否命题.6.四种命题的形式一般到,我们用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p则q;逆命题:若q则p;否命题:若p则q;逆否命题:若q则p.7. 四种命题的相互关系一般的,四种命题的真假性,有且仅有以下四种情况:(四种命题的真假性之间的关系)原命题逆命题否命题逆否命题真真真真真假假真假真真假假假假假两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆或互否命题,它们的真假性没有关系.8. 反证法欲证“若p则q”为真命题,从否定其结论即“非q”出发,经过正确的逻辑推理导出矛盾,从而“非q”为假,即原命题为真,这样的证明方法称为反证法其反证法的步骤:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从这个假设出发,通过推理论证,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确1.2 充分条件与必要条件1. 充分条件的定义 如果p成立时,q必然成立,即pq,我们就说,p是q成立的充分条件(即为使q成立,只需条件p就够了)2. 必要条件的定义 如果B成立时,A必然成立,即qp,我们就说,q是p成立的必要条件(即为使q成立,就必须条件p成立)3. (1)若pq,且qp,则称p是q的充分必要条件,简称充要条件。P q说明:充要条件是互为的; “p是q的充要条件”也说成“p与q等价” 、 p当且仅当q”等.pq,且qp,则p是q的充要条件;pq,但qp,则p是q的充分而不必要条件;qp,但pq,则p是q的必要而不充分条件;pq,且qp,则p是q的既不充分也不必要条件.1.3 简单的逻辑联结词1. “或”与日常生活中的用语“或”的意义不同,在日常生活用语中的“或”带有不可兼有的意思,而逻辑用语中的“或”可以同时兼有。对于逻辑用语“或”的理解我们可以借助于集合中的并集的概念:在或中的“或”是指 “”与“”中至少有一个成立,可以是“且”,也可以是“且”,也可以是“且”,逻辑用语中的“或”与并集中的“或”的含义是一样的;2. 对“且”的理解,可以联想到集合中的交集的概念:在且的“且”是指“”、“”都要满足的意思,即既要属于集合A,又要属于集合B;3. 对“非”的理解,可以联想到集合中的补集的概念:“非”有否定的意思,一个命题经过使用逻辑联结词“非”构成一个复合命题“非”,当为真时,非为假,当为假时,非为真。若将命题对应集合,则命题非就对应着集合在全集U中的补集;对于非的理解,还可以从字意上来理解,“非”本身就具有否定的意思,如“0.5是非整数”是对命题“0.5是整数”进行否定而得出的新命题。一般地,写一个命题的否定,往往需要对正面叙述的词语进行否定。4. 构造复合命题的方式:简单命题+逻辑连结词(或、且、非)+简单命题。5. 复合命题的真假判断:pq非pp或qp且q真真假真真真假假真假假真真真假假假真假假注意:“命题的否定”与“否命题”是两个不同的概念:前者只否定结论,后者结论与条件共同否定。1.4 全称量词与存在量词1. 全称量词、全称命题定义:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“ ”表示。(常见的全称量词还有“一切” “每一个” “任给” “所有的”等 。 )含有全称量词的命题,叫做全称命题。如:全称命题“对M中任意一个x,有p(x)成立 ”可用符号简记为:简记为: 读作“对任意x属于M,有p(x)成立”。2. 存在量词、特称命题定义:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“ ”表示。(常见的存在量词还有“有些”“有一个”“对某个”“有的”等 。) 含有存在量词的命题,叫做特称命题。特称命题“存在M中的一个x0,使p(x0)成立 ”可用符号简记为:读作“存在一个x0属于M,使p(x0)成立”。3. 同一全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法:4. 全称命题、特称命题(含有全称量词的命
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025电梯安装施工合同范本
- 2025股权转让合同转让合同
- 2025综合租赁合同示范文本
- 内蒙古自治区赤峰市红山区赤峰第四中学2023-2024学年高二下学期5月期中生物试题 含解析
- 2025届辽宁省辽南协作体高三下学期第三次模拟物理试卷
- 降压药物护理
- 普通心理学(第2版)课件 第十二章 人格
- 人教版小学一年级语文上学期期末检测题
- 2025年医患沟通学试题
- 初三毕业班中考前家长会班主任发言稿模版
- 折弯工艺培训
- 口腔医院前台服务培训标准
- 换药术课件完整版本
- 乘法运算定律复习课1课件
- DB23∕T 1019-2020 黑龙江省建筑工程资料管理标准
- 高考减压讲座通用PPT课件
- 高考考前指导(班主任)心理方面、应试复习方面等
- 药品采购培训(课堂PPT)课件
- 网络销售授权合同范本
- ABAQUS时程分析法计算地震反应的简单实例
- 破碎机的设计毕业设计
评论
0/150
提交评论