IPv6(互联网协议).doc_第1页
IPv6(互联网协议).doc_第2页
IPv6(互联网协议).doc_第3页
IPv6(互联网协议).doc_第4页
IPv6(互联网协议).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IPv6(互联网协议) IPv6是互联网协议的第六版;最初它在IETFs IPng选取过程中胜出时称为互联网下一代协议(IPng)。IPv6准备取代现有 标准,IPv4。IPv4只支持大概40亿(4 109)个网络地址,而IPv6支持3.4 1038个。这等价于在地球上每平方英寸有4.3 1020地址(6.7 1017地址/平方米)。预计在2025年以前IPv4都会被支持,以便给新协议的修正留下足够的时间。 促使Ipv6形成 的主要原因是网络空间的匮乏,尤其是在高速发展的亚洲国家例如印度和中国。参考IPv4 address exhaustion这篇文章了解更多这方面的内容。但随着NAT的引入这已经不是很大的问题。现在推动IPv6发展的主要动力是 新的用途,像移动性,服务质量,机密性的扩展等。 IPv6是被正式广泛使用的第二版互联网协议。(IPv5不是IPv4的继承,而是实验性的面向流的数据流协议,用来对声 音,图像等提供支持。) IPv6的计划是建立未来互联网扩充的基础。虽然IPv6十年前就已被IETF指定作为IPv4的下一代(在1994年),在世界范围 内使用IPv6部署的公众网与IPv4相比还非常的少。IPv6 编址 从IPv4到IPv6最显著的变化就是网络地址的长度。RFC 2373 和RFC 2374定义的IPv6地址,就像下面章节所描述的,有128位长;IPv6地址的表达形式一般采用32个十六进制数。 IPv6中可能的地址有2128 3.41038个.也可以想象为1632个因为32位地址每位可以取16个不同的值(参考组合数学)。 在很多场合,IPv6地址由两个逻辑部分组成:一个64位的网络前缀和一个64位的主机地址,主机地址通常根据物理地址自动生成,叫做EUI-64(或者64-位扩展唯一标识)。IPv6地址表示 IPv6地址为128位长但通常写作8组每组四个十六进制数的形式。例如: 2001:0db8:85a3:08d3:1319:8a2e:0370:7344 是一个合法的IPv6地址。 如果四个数字都是零,可以被省略。例如: 2001:0db8:85a3:0000:1319:8a2e:0370:7344 等价于2001:0db8:85a3:1319:8a2e:0370:7344 遵从这些规则,如果因为省略而出现了两个以上的分号的话,可以压缩为一个,但这种零压缩在地址中只能出现一次。因此: 2001:0DB8:0000:0000:0000:0000:1428:57ab 2001:0DB8:0000:0000:0000:1428:57ab 2001:0DB8:0:0:0:0:1428:57ab 2001:0DB8:0:0:1428:57ab 2001:0DB8:1428:57ab 都使合法的地址,并且他们是等价的。但 2001:25de:cade 是非法的。(因为这样会使得搞不清楚每个压缩中有几个全零的分组) 同时前导的零可以省略,因此: 2001:0DB8:02de:0e13 等价于 2001:DB8:2de:e13 如果这个地址实际上是IPv4的地址,后32位可以用10进制数表示;因此:ffff: 等价于 :ffff:c0a8:5909, 但不等价于 : 和 :c0a8:5909。 ffff:格式叫做IPv4映射地址,是不建议使用的。而:格式叫做IPv4一致地址。 IPv4 地址可以很容易的转化为IPv6格式。举例来说,如果IPv4的一个地址为2(十六进制为0x874B2B34), 它可以被转化为0000:0000:0000:0000:0000:0000:874B:2B34或者:874B:2B34。同时,还可以使用混合符号(IPv4- compatible address),则地址可以为:2。IPv6 封包 IPv6封包由两个主要部分组成:头部和负载。 包头是包的前40字节并且包含有源和目的地址,协议版本,通信类别(8位,包优先级),流标记(20位,QoS服务质量 控制),负载长度(16位),下一个头部(用于向后兼容性),和跳段数限制(8位,生存时间)。后面是负载,至少1280字节长 ,或者在可变MTU(最大传输单元)大小环境中这个值为1500字节。负载在标准模式下最大可为65535字节,或者在扩展 包头的jumbo payload选项进行设置。 IPv6曾有两个有着细微差别的版本; 在RFC 1883中定义的原始版本(现在废弃)和RFC 2460中描述的现在提议 的标准版本。两者主要在通信类别这个选项上有所不同,它的位数由4位变为了8位。其他的区别都是微不足道的。 分段(Fragmentation)只在IPv6的主机中被处理。在IPv6中,可选项都被从标准头部中移出并在协议字段中指定,类 似于IPv4的协议字段功能。IPv6和域名系统 IPv6地址在域名系统中为执行正向解析表示为AAAA记录(所谓4A记录)(类似的IPv4表示为A记录A records) ;反向解析 在 (原先)下进行,在这里地址空间为半字节16进制数字格式。这种模式在RFC 3596给与 了定义。 AAAA模式是IPv6结构设计时的两种提议之一。另外一种正向解析为A6记录并且有一些其他的创新像二进制串标签和DNAME记 录等。RFC 2874和它的一些引用中定义了这种模式。 AAAA模式只是IPv6域名系统的简单概括,A6模式使域名系统中检查更全面,也因此更复杂: A6记录允许一个IPv6地址在分散于多个记录中,或许在不同的区域;举例来说,这就在原则上允许网络的快速重编 号。 使用域名系统记录委派地址被DNAME记录(类似于现有的CNAME,不过是重命名整棵树)所取代。 一种新的叫做比特标签的类型被引入,主要用于反向解析。 2002年8月的RFC 3363中对AAAA模式给与了有效的标准化(在RFC 3364有着对于两种模式优缺点的更深入的讨论)。IPv6部署与应用 2004年七月的ICANN声称3:(/announcements/announcement-20jul04.htm) 互联网的根域名服务器已经经过改进同时支持IPv6和IPv4。缺点: 需要在整个互联网和它所连接到的设备上建立对IPv6的支持 从IPv4访问时的转换过程中,在网关路由器(IPv6IPv4)还是需要一个IPv4地址和一些NAT(=共享的IP地址),增加了它的复杂性,还意味着IPv6许诺的巨大的空间地址不能够立刻被有效的使用。 遗留的结构问题,例如在对IPv6 multihoming支持上一致性的匮乏。 工作:6bone ICMPv6 IPv6 multihoming 转换机制 直到IPv6获得广泛的使用和路由下部构造的支持之前,还是需要一种机制来在IPv4网中使用IPv6。需要做的是:在双协议栈节点间配置静态IPv6-in-IP信道。 6to4,一种自动的非对称的隧道机制。 这些隧道通过将IPv6包包装在IPv4包中,这些包头的协议字段值为41,因此叫做proto-41。类似的,ISATAP允许IPv6包在下层组织都是IPv4的网络中传输。它也使用协议号41。 当使用NAT(网络地址转换)设备的网络使用IPv6时,大多数并没有对proto-41进行正确的转发,可以使用Teredo协议在IPv4中基于UDP包装IPv6。还可以使用IPv6-to-IPv4和IPv6-to-IPv6代理,尽管它是在应用层的(例如HTTP)。主要的IPv6公告 在2003年,日本经济新闻(在2003年被CNET亚洲机构引用)报告中说日本、中国和韩国声称

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论