



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题 2.4分解因式法【学习目标】 1、会用分解因式法(提公因式法、公式法)解某些简单的数字系数的一元二次方程2、能根据具体一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性【学习重点】理解分解因式的概念,用分解因式法解一元二次方程.【学习难点】运用提取公因式法与公式法解一元二次方程.【学前准备】1、分解因式是 2、我们学习了解一元二次方程的三种方法是: 3、解下列方程:(1)x240; (2)x23x10; (3)(x1)2250; (4)20x223x70【自学探究】1、一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?解:设这个数为x,由题意,可得方程 x23x解法1:(配方法) 解法2:(公式法)你还有其他的方法吗?解法3: 当x2=3x时, =0,则x(x-3)=0 所以 或 这种把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用ab0,则a0或b0,把一元二次方程变为一元一次方程,从而求出方程的解把这种解一元二次方程的方法称为分解因式法【师生合作】1、解下列方程:(1) 5x24x (2) x2x(x2) (3) (x1)(x3)122、想一想:你能用分解因式法解方程x240,(x1)2250吗?分解因式法是把一个一元二次方程转化为两个 方程来解,体现了一种“降次”的思想.【小试牛刀】1、选择题(1)已知一元二次方程 x2-2x=0, 他的解是( )A、0 B、2 C、0,-2 D、0,2(2)若方程x(x+3)(3x+1)=0,则3x+1的值为( )A、7 B、2 C、0 D、0或7(3)若要使2x2-3x-5的值等于4-6x的值,则x应为( )A、- B、 C、 D、2解下列方程:(1)(x2)(x4)0; (2)4x(2x1)3(2x1)(3)(2x+3)2=4(2x+3) (4)2(x-3)2=x2-9(5)(x-3)2=(2x+3)2 (6)(x-2)(x-3)=123、用适当的方法解下列方程:(1)(1-x)2= (2)x2-6x-19=0 (3)3x2=4x+1(4)y2-15=2y (5)5x(x-3)-(x-3)(x+1)=0 (6)4(3x+1)2=25(x-2)23、某人向天上投掷一小石子,设x秒后离地面的高度为(20x-5x2)米.(1)几秒后,小石子离地面的高度15米?(2)几秒后,小石子落在地面?【课堂小结】1.本节学习的数学知识是 2. 本节学习的数学方法是 3. 解一元二次方程的基本方法 .【今日作业】1、 用分解因式解下列方程:(1)(4x-1)(5x+7)=0 (2)3x(x-1)=2-2x (3)2y2+4y=y+2 (4)5(x2-x)=3(x2+x) (5)2x+6=(x+3)2 (6)x2+24x+144=02、课本70页,问题解决第3题.(抄题并画图)【中考链接】1、(2007安徽)方程x(x+3)=x+3的根是( )A、x=1 B、x=0或x= -3 C、x= -2,x= 3 D、x=1,x= -32、(2008湖北天门)方程x(x+3)=-x(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省温州市苍南县龙港市青华学校2024-2025学年七年级下学期6月期末数学试题(含部分答案)
- 广西南宁市部分学校2024-2025学年高一下学期期末教学质量监测 化学试题(含答案)
- 甘肃省百师联盟2024-2025学年高二下学期期末考试数学试题(含部分答案)
- 少先队员演讲稿范文
- 汉字单人旁的演变课件
- 2025协商解除劳动合同书
- 2024年秋新北师大版数学一年级上册教学课件 第二单元 5以内数加与减 第4课时 还剩下多少
- 实验小学交通安全应急预案10篇
- 水表井安全知识培训总结课件
- 建筑施工现场噪音控制方案
- 2025年职工技能大赛考核试题及答案
- 2025年中国邮政集团工作人员招聘考试笔试试题(含答案)
- 规范大件运输管理制度
- 药学处方审核培训
- T-MSC 005-2024 灵芝孢子油生产加工技术规范
- 职业院校班主任辅导员培训
- 贸易意向合作协议书范本
- 校园活动讲安全
- DB37T 5230-2022 岩棉复合板外墙外保温系统应用技术规程
- 外科腹腔镜手术护理
- 浅析立体心何模块在新高考中的命题方向研究课件高三数学一轮复习
评论
0/150
提交评论