




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
武汉理工大学数字信号处理课程设计说明书1 DFT基础知识1.1离散傅立叶变换(DFT)定义 在实际应用中,经常遇到的是有现场的非周期序列,需要知道的是如何获取有限长序列的离散频谱。事实上,完全可以借助离散傅里叶级数,来研究有限长序列频谱的离散化。 可以设x(n)是一个长度为M的有限长序列,则定义x(n)的N点离散傅里叶变换为:正变换:=DFT = = 反变换:=IDFT= 或RN(k)RN(k)x(n)= RN(n) =RN(n)式中,N称为DFT变换区间长度,NM。DFT隐含有周期性。1.2复共轭序列的DFT设是的复共轭序列,长度为N,则(1)已知DFT则 DFT= 且(2)已知DFT则 DFT= 1.3 DFT的共轭对称性DFT有对称性,但由于DFT中讨论的序列及其离散傅立叶变换均为有限长序列,且定义区间为0到N-1,所以这里的对称性是指关于N/2点的对称性。下面讨论DFT的共轭对称性质。1.3.1 有限长共轭对称序列和共轭反对称序列长度为的有限长序列,若满足 , (1.1) 称序列为共轭对称序列,一般用来表示。若满足 , (1.2)称序列为共轭反对称序列,一般用来表示即=, 0nN-1=, 0nN-1当N 为偶数时,把 代入式(1.1)与式(1.2),得 , (1.3), (1.4) 式(1.3)与式(1.4)说明共轭对称序列与其共轭序列以成偶对称,共轭反对称序列与其共轭序列以成奇对称。当N为奇数时,把 代入式(1.1)与式(1.2),得 , (1.6) , (1.6) 式(1.5)与式(1.6)说明共轭对称序列与其共轭序列以成偶对称,共轭反对称序列与其共轭序列以成奇对称。设一长度为的有限长序列,令则有 (1.7)这说明任一有限长序列,都表示成一个共轭对称序列与共轭反对称序列的和,在频域下同样有类似结论 (1.8)式中 (1.9) (1.10)1.3.2 共轭对称性分析(1)当x(n)为长度N的复数序列时,有 = = (1.11)同理可得 (1.12)即式(1.11)和(1.12)说明复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量;复书序列虚数部分的离散傅立叶变换是原来序列离散傅里叶变换的共轭反对称分量。另一方面,由式(1.7)知有限长序列可分解为共轭对称分量与共轭反对称分量,即=+ 可得其离散傅立叶变换 = (1.13)同理可得 = (1.14)即上面两式说明复序列共轭对称分量序列的离散傅立叶变换是原来序列离散傅立叶变换的实数部分;复序列共轭对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。综上可得到有限长复序列的DFT 的共轭对称性质如下将有限长序列x(n)分成实部与虚部,即: 则:将有限长序列x(n)分成共轭对称部分和共轭反对称部分,即=+,则:(2)当x(n)为长度N的实数序列或纯虚数序列时,有当x(n)为实序列时,则 又据)的对称性:有当x(n)为纯虚序列时,则 又据)的对称性:有 离散傅立叶变换的对称性,在求实序列的离散傅立叶变换中有重要作用。例如,有两个实数序列和,为求其离散傅立叶变换,可以分别用和作为虚部和实部构造一个复数序列x(n),求出x(n)的离散傅立叶变换,然后根据式(1.9)和(1.10)得到的共轭对称分量和,分别对应和,从而实现一次DFT的计算可得到两个序列DFT的高效算法。而DFT可以通过一次快速FFT变换来实现。2程序设计与分析本次课设计分两个部分,一个是要验证N点的DFT的对称性,另一个是要用一次快速傅立叶变换FFT实现两个序列的DFT2.1 N点DFT对称性的验证2.1.1程序流程图由于函数ezplot只能画出既存在Symbolic Math Toolbox中又存在于总matlab工具箱中的函数,而gedc(实信号分解为循环偶分量和循环奇分量)和dft(计算离散付利叶变换)仅存在Symbolic Math Toolbox中,因此需要在自己的工作目录work下创建。此后可以直接调用这些函数。N点的DFT的对称性验证流程图如图2-1所示开始求x序列的共轭对称与反对称分量画出共轭对称与反对称分量图形求出X(K),Xep,Xop画出real(X(K) ),imag(X(K) ),Xep,Xop的图形Xep结束图2-1 验证对称性流程图输入x序列n=0:N-12.1.2 程序编写与结果分析首先在目录work下创建gedc的M文件,gedc的M文件是用来生成共轭对称分量与共轭反对称分量的,程序如下:function xec,xoc=gedc(x);N=length(x); n=0:(N-1); xec=0.5*(x + x(mod(-n,N)+1); xoc=0.5*(x - x(mod(-n,N)+1);再是在目录work下创建dft的M文件,dft为离散傅立叶变换,程序如下:function Xk=dft(xn,N);n=0:1:N-1;k=0:1:N-1;WN=exp(-j*2*pi/N);nk=n*k;WNnk=WN.nk;Xk=xn*WNnk;主程序:N=12,序列为x=2.5 0 1.6 -3 -2 2 1.6 -3 -1 4 4.5 -2 的程序设计与结果分析程序:figure(1)n=0:11;x=input(请输入序列x=);xep,xop=gedc(x);subplot(2,1,1);stem(n,xep);title(共轭对称分量)xlabel(n);ylabel(xep);axis(-0.5,12.5,-3,4);subplot(2,1,2);stem(n,xop);title(共轭反对称分量);xlabel(n);ylabel(xop);axis(-0.5,12.5, -4,4);figure(2)X=dft(x,12) ;Xep=dft(xep,12);Xop=dft(xop,12);subplot(2,2,1);stem(n,real(X);axis(-0.5,12.5,-10,10);title( real(X);xlabel(k);subplot(2,2,2);stem(n,imag(X);axis(-0.5,12.5,-17,17);title( imag(X);xlabel(k);subplot(2,2,3);stem(n,Xep);axis(-0.5,12.5, -10,10);title(DFTxep(n);xlabel(k);subplot(2,2,4);stem(n,imag(Xop);axis(-0.5,12.5,-17,17);title(DFTxop(n);xlabel(k);结果:图2-2 共轭对称分量与共轭反对称分量图2-3 对称性的验证图形分析:从图2-3可以看出复数序列实数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭对称分量;复数序列虚数部分的离散傅立叶变换是原来序列离散傅立叶变换的共轭反对称分量。复序列共轭对称分量序列的离散傅立叶变换是原来序列离散傅立叶变换的实数部分;复序列共轭反对称分量的离散傅立叶变换是原来序列离散傅立叶变换的虚数部分。从而验证了DFT的对称性。2.2 用一次FFT实现两个序列的DFT2.2.1 程序流程图一次快速傅立叶变换FFT实现两个序列的DFT流程图如图2-4所示。开始输入x=+j调用fft函数得到和结束图2-4 一次FFT变换实现两序列的DFT2.2.2 程序编写与结果分析程序: x1=input(请输入序列x1=);x2=input(请输入序列x2=);N=input(请输入N=);x=x1+j*x2;X=fft(x,N);k=0:N-1;c=conj(X);Xep=0.5*(X+ c(mod(-k,N)+1);Xop=-j*0.5*(X- c(mod(-k,N)+1);X1=XepX2=Xopsubplot(2,1,1);stem(k,X1);xlabel(k);ylabel(X1);axis(-0.5,7.5,-10,40);subplot(2,1,2);stem(k,X2);xlabel(k);ylabel(X2);axis(-0.5,7.5,-10,40);结果:当运行程序时,会出现提示,按提示输入x1=1 3 5 2 4 6 3 5 2 6,x2=1 2 3 4 5 -5 -4 -3 -2 -1,N=10,程序运行结果如下:X1和X2分别为x1,x2的离散傅立叶变换,X1和X2的图形如图2-7所示图2.5 X1,X2的离散傅立叶变换当直接调用DFT时,程序运行结果和上面的是相同的,从而实现了用一次FFT实现了两个序列的DFT。 3 课程设计心得体会本次课程设计主要是运用本学期所学到的数字信号处理的基础知识来设计一个符合要求的matlab程序来进行DFT对称性的验证以及应用,本次设计不仅要求我们要掌握数字信号处理课程的基础知识,还要求我们对matlab编程有深刻的理解和掌握。用新的语言去解决工程问题根本不需要先掌握某一门语言,有效的方法是先了解那门语言的一些基本函数,然后熟悉界面,就可以开始编了。拿到一个课题,不要急于坐在电脑前开始编程,因为当你坐在电脑前都不知道该干什么时,你就是对课题了解得不够。你首先需要的是透彻分析课题,把你要解决的问题写下来和列出各种可能情况。接下来,就考虑看用什么样的算法去解决,等到这一切都定下来后就可以开始着手编程了,如果你不熟悉语言的话,过程中会碰到很多问题,例如,不知道用什么样的函数去实现,这时你就可以根据实际情况去找资料,看帮助文件。等到程序完成后,调试是非常关键的一步,看到出错没有关系,利用debug去分析,相信一定可以找到问题的所在,然后逐个改正。经过这么一次以后,你会发现,你已经对本来不熟悉的语言已经有了很大的了解,而且可以解决实际问题,这样你就不会觉得学语言很枯燥,而是觉得很有趣。相信经过多次反复,一定可以很快掌握一门语言的基本技巧。虽然我现在已经初步学会了如何设计符合要求的matlab程序,但是离真正能够利用已学的知识自由设计matlab程序的还有很长的一段的距离。课设的这段时间我确实受益匪浅,不仅是因为它发生在特别的实践,更重要的是我的专业知识又有了很大的进步,进步总是让人快乐的。参考文献1 刘泉等主编. 信号与系统. 高等教育出版社,2006年2 赵红怡等主编. 数字信号
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年二手房买卖合同补充条款及产权过户手续代办服务协议
- 2025年度高端制造业生产厂长专项聘用合同
- 2025版消防设施检测与风险评估服务合同
- 2025版人力资源和社会保障局劳动和社会保障专项基金管理合同
- 2025年度新型环保脱硫氢氧化钙购销合同书
- 2025年度工业厂房改造工程委托施工合同
- 2025房地产开盘活动地产项目样板间设计施工合同范本
- 2025版委托方与劳务派遣人员安全责任与事故处理协议
- 2025年度社区文化活动策划与执行服务合同
- 2025版跨境电商销售分红及仓储物流服务合同下载
- 部编版(2024版)七年级历史上册第1课《远古时期的人类活动》精美课件
- 2024年云南省昆明市官渡区、呈贡区小学六年级第二学期小升初数学试卷含解析
- 《睡眠质量下降人群治未病干预方案》
- 2024年《企业战略管理》期末考试复习题库(含答案)
- 家具厂封边技能培训
- 中华民族共同体概论课件第十一讲中华一家与中华民族格局底定(清前中期)课件
- DBJ50-T-386-2021 建筑施工现场扬尘控制标准
- 中国流行音乐的发展史
- 《中国成人肥厚型心肌病诊断与治疗指南-2023》更新要点解读
- NB-T 11054-2023 防孤岛保护装置技术规范
- 实验动物微生物学和寄生虫学质量控制课件
评论
0/150
提交评论