数学思想方法在初中数学教学中是对数学知识和方法本质的认识.doc2.doc_第1页
数学思想方法在初中数学教学中是对数学知识和方法本质的认识.doc2.doc_第2页
数学思想方法在初中数学教学中是对数学知识和方法本质的认识.doc2.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

思想方法在初中数学中的作用数学思想方法在初中数学教学中是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学方法是解决问题的手段和工具,是解决数学问题时的程序、途径,它是实施数学思想的技术手段数学问题的解决离不开以数学思想为指导,以数学方法为手段数学思想方法是从数学内容中提炼出来的数学学科的精髓,是数学素养的重要内容之一,数学思想方法揭示了概念、原理、规律的本质,是沟通基础与能力的桥梁在初中数学教学中,渗透转化思想,可以提高学生分析解决问题的能力;渗透数形结合的思想方法,可以提高学生的数形转化能力和迁移思维的能力;渗透分类讨论的思想方法,可以培养学生全面观察事物、灵活处理问题的能力;渗透数形结合思想,可以培养学生数学建模能力;在初中数学教学中,渗透数学思想方法应遵循渗透“方法”,了解“思想”;训练“方法”,理解“思想”;掌握“方法”,运用“思想”;提炼“方法”,完善“思想”的教学原则.对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现教学中那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源水,无本之木,学生也难以领略深层知识的真谛因此数学思想的教学应与整个表层知识的讲授融为一体在初中数学教学中,教师应向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验只要我们教师课前精心设计,课上精心组织,充分发挥学生的主体作用,多创设情景,多提供机会,坚持不懈,就能达到我们的教学目标,从而培养学生的数学素质,提高学生在初中数学教学中,渗透数学思想方法,可以克服就题论题,死套模式,数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析解决问题的能力,从而使思维品质和能力有所提高。提高学生的数学素质、必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。 在初中数学教学中,我是这样对学生进行数学思想方法的渗透与培养的。1、化归与转化的思想和方法 转化归纳思想是把一个较复杂问题转化为另一个较简单的问题并且对其方法进行归纳。渗透“方法”,了解“思想”。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。在渗透数学思想、方法的过程中,教师要精心设计、有机结合,要有意识地潜移默化地启发学生领悟蕴含于数学之中的种种数学思想方法,切忌生搬硬套,和盘托出,脱离实际等错误做法。比如,教学二次不等式解集时结合二次函数图象来理解和记忆,总结归纳出解集在“两根之间”、“两根之外”,利用形数结合方法,从而比较顺利地完成新旧知识的过渡。 化归意识是指在解决问题的过程中,对问题进行转化,使之成为简单、熟知问题的基本解题模式,它是使一种数学对象在一定条件下转化为另一种数学对象的思想和方法。如有理数的减法运算是利用了相反数的概念转化为加法;学习方程和方程组时,通过逐步“消元”或“降次”的方法使“多元”转化为“一元”“、高次”转化为“低次”方程进行求解;将多边形的内角和转化为三角形的内角和进行研究等问题都是化归思想的运用,它们均采用将“未知”转化为“已知”、将“陌生”转化“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有等解决的问题转化为已有明确解决程序的问题,以便利用已有的理论、技术来加以处理,从而培养学生用联系的、发展的、运动变化的观点观察事物、认识问题。 2、分类讨论的思想和方法学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的分类讨论,当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论。比如解不等式|a-1|4的时候,就要讨论a的取值情况。 例如在有理数及其运算这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,一元一次方程中列方程解应用题中画示意图,常常会给解决问题带来思路。生活中的数据“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 教材中进行分类的实例比较多,如有理数、实数、三角形、四边形等分类的教学不仅可以使学生明确分类的重要性:一是使有关的概念系统化、完整化;二是使被分概念的外延更清楚、更深刻、更具体,并且还能使学生掌握分类的要点方法:(1)分类是按一定的标准进行的,分类的标准不同,分类的结果也不相同;(2)要注意分类的结果既无遗漏,也不能交叉重复;(3)分类要逐级逐次地进行,不能越级化分,如不能把实数分为整数、分数和无理数。3、数形结合思想: 把代数和几何相结合,例如对几何问题用代数方法解答,对代数问题用几何方法解答,这种方法在解析几何里最常用。 由数思形,数形结合,用形解决数的问题。 例如在有理数及其运算这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,一元一次方程中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章生活中的数据“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 由形思数,数形结合,用形解决数的问题。例如第四章的平面图形及其位置关系中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论