




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
空间点、直线、平面之间的位置关系2.1.1平面一、教学目标:1、知识与技能(1)掌握平面的表示法及水平放置的直观图;(2)掌握平面的基本性质及作用;2、过程与方法(1)通过师生的共同讨论,利用生活中的实物形成平面的概念,使学生对平面有了感性认识;(2)让学生归纳整理点、线、面的关系.3、情感与价值使学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣,提高学生的空间想象能力.二、教学重点、难点重点:1、平面的概念及表示;2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.教学过程:一、创设情境,新课引入1. 利用你手中的直尺,如何判定你课桌的桌面是不是平的2. 你骑的自行车有一个脚撑就可站稳,为什么?3. 矩形硬纸板的一顶点放在讲台面上,硬纸板与讲台面不重合,能否说这两个平面只有一个公共点?4教师借助实物,引入生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,这些都给我们以平面的印象.给同学设问:你们能举出更多例子吗?引导学生观察、思考、举例和互相交流.与此同时,教师对学生的活动给予评价.顺势导入新课.二、师生互动,新课讲解1、平面含义教师根据上述平面实例,导入几何里所说的平面概念,就是从这样的一些物体中抽象出来的,强调几何里的平面是无限延展的.2、平面的画法及表示教师设问师:在平面几何中,怎样画直线?引入平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成45,且横边画成邻边的20倍长(如图)A B D C平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画。平面内有无数个点,平面可以看成点的集合。点A在平面内,记作:A点B在平面外,记作:B ?3、平面的基本性质无限延展性4、 探究公理(1)问题1的探究教师提出问题,引发学生思考:如何用直尺这个工具来判定你的桌面是不是平的呢?(把直尺放在物体表面的各个方向上,如果直尺的边缘与物体的表面不出现缝隙,就可判断物体表面是平的)教师点拔:这是判断物体表面是不是平的的一个常用方法如果物体表面是平的,把直尺边缘无论如何放在平面上,则边缘与平面都没有缝隙,也就是说,如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内由此,可以归纳出公理1公理1 如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(如图14-1) B A这时我们说,直线在平面内或平面经过直线这一性质是平面的主要特征弯曲的面就不是处处具有这种性质教师进一步分析:为了书写的简便,我们把代数中刚学习过的有关集合的符号,引入立体几何中把点作为基本元素,直线、平面即为“点的集合”,这样:点A在直线a上,记作Aa;点A在直线a外,记作Aa;点A在平面内,记作A;点A在平面外,记作A直线a在平面内,记作a直线a在平面外,记作a; ; 公理1用集合符号表示为:Aa,Ba,A,B,则有例1:证明如果一个三角形的两边在一个平面内,那么第三边也在这个平面内注意:在分析过程中,一定要强调“要证明直线在平面内,则应该证明什么?条件中有没有,没有如何去创造”通过这种逆推思路的分析,培养学生良好的思考习惯课堂练习1:判断下列命题的真假 如果一条直线不在平面内,则这条直线与平面没有公共点( X ) 过一条直线的平面有无数多个(V ) 与一个平面没有公共点的直线不存在(X) 如果线段AB在平面内,则直线AB也在平面内a(V)(2)问题2的探究教师提出问题,引发学生思考:自行车有一个脚撑就可站稳,为什么?(因为前轮着地点、后轮着地点、脚撑着地点三点在一个平面上,而且为了站稳,前轮着地点、后轮着地点、脚撑着地点三点不共线,因此我们可以推测:过不共线的三点有且只有一个平面)教师演示:用相交于一点的三根小棍的三个端点作为空间不在一直线上的三个点(如图14-2),当把作为平面的硬纸板放在上面时,这张作为平面的硬纸板不能再“动”了,因为一动就要离开其中的一个点,硬纸板所在平面就不能确定了,正如同刚才的发现:过不共线的三点有且只有一个平面公理2 经过不在同一条直线上的三点,有且只有一个平面(如图14-3)公理2也可以简单地说成:不共线的三点确定一个平面教师出示问题:试举出一个应用公理2的实例(例如,一扇门用两个合页和一把锁就可以固定了)教师明晰:由于两点确定一条直线,根据公理2容易得出如下推论:推论1 经过一条直线和直线外的一点,有且只有一个平面已知:点A,直线a,Aa(如图14-6)求证:过点A和直线a可以确定一个平面分析:“确定一个平面”包含两层意思:一是存在,二是唯一这两层都应证明(说明:这个证明可以由教师引导学生一起分析完成,但步骤教师一定要板书)证明:存在性因为Aa,在a上任取两点B,C,所以过不共线的三点A,B,C有一个平面(公理2)因为B,C,所以a(公理1)故经过点A和直线a有一个平面唯一性如果经过点A和直线a的平面还有一个平面,那么,因为B,C,所以B,B(公理1)故不共线的三点A,B,C既在平面内又在平面内所以平面和平面重合(公理2)所以经过点A和直线有且只有一个平面有时“有且只有一个平面”,我们也说“确定一个平面” 类似地可以得出下面两个推论:推论2 经过两条相交直线,有且只有一个平面(如图14-7)推论3 经过两条平行直线,有且只有一个平面(如图14-8)(3)问题3的探究教师将矩形硬纸板的一顶点放在讲台面上,让学生观察,并同时提出问题:能否说这两个平面只有一个公共点?(不能,因为平面是无限延展的,所以这两个平面应该有一条经过这公共点的直线)教师点拔:我们只能用有限的模型或图形来表示无限延展的平面,所以我们有时要看模型或图形,但又不能受模型或图形的限制来影响我们对平面的无限延展的了解这个实例说明了平面具有如下性质公理3 如果两个不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直公理3的数学符号语言:;P,Pa,Pa;教师进一步概括:为了简便,以后说到两个平面,如不;课堂练习2:判断下列命题的真假;如果两个平面有两个公共点A,B,那么它们就有无;例2:两两相交且不过同一点的三条直线必在同一个平;已知:ABACA,ABBCB,ACBC;求证:直线AB,BC,AC共面;证法1:因为ABACA,;公理3的数学符号语言:P,Pa,Pa教师进一步概括:为了简便,以后说到两个平面,如不特别说明,都是指两个不重合的平面如果两个平面有一条公共直线,则称这两个平面相交这条公共直线叫作这两个平面的交线由公理可见,两个平面如果有一个公共点,那么就有无穷多个公共点,所有公共点在公共直线上,即它们的交线上;交线上的每一个点都是两平面的公共点课堂练习2:判断下列命题的真假如果两个平面有两个公共点A,B,那么它们就有无数个公共点,并且这些公共点都在直线AB上(V) 两个平面的公共点的集合可能是一条线段 ( X )例2:两两相交且不过同一点的三条直线必在同一个平面内(如图14-9)已知:ABACA,ABBCB,ACBCC求证:直线AB,BC,AC共面证法1:因为ABACA,所以直线AB,AC确定一个平面(推论2)因为BAB,CAC,所以B,C,故BC(公理1)因此,直线AB,BC,CA都在平面内,即它们共面证法2:因为A直线BC,所以过点A和直线BC确定平面(推论1)因为A,BBC,所以B故AB同理AC, ,所以AB,AC,BC共面证法3:因为A,B,C三点不在一条直线上,所以过A,B,C三点可以确定平面(公理2)因为A,B,所以AB同理BC,AC(公理1) ,所以AB,BC,CA三直线共面思考:在这道题中“且不过同一点”这几个字能不能省略,为什么?(不能,如果三条直线两两相交且过同一点,则这三条直线可以不共面)课堂练习3:1. 三角形、梯形是平面图形吗?(是)2. 四条直线两两相交且不过同一点,这四条直线是否一定共面?(不一定)3. 两个平面最多可以把空间分成几个部分?三个平面呢?例3:用符号表示下列语句。(1) 直线L经过平面?外一点M。(2) 平面?与平面?相交于直线a,直线b在?内,且与a交于C。三、课堂小结、巩固反思(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?(3)判断共面的方法.1).根据公理1探究直线与平面的各种位置关系.2).根据公理2探究两条相交直线或平行直线确定一个平面的合理性.3).根据公理3探究平面与平面的各种位置关系.四、布置作业:A组:1、(课本P51习题2.1A组第1题)2、(课本P51习题2.1A组第2题)3、(课本P51习题2.1A组第7题)4、(课本P51习题2.1A组第8题)5、(1)一个平面将空间分成几部分?(2)两个平面将空间分成几部分?(3)三个平面将空间分成几部分?(答:(1)两部分;(2)三部分或四部分;(3)四、六、七、八部分)6、(1)不共面的四点可以确定几个平面?(2)三条直线两两平行,但不共面,它们可以确定几个平面?(3)共点的三条直线可以确定几个平面?(答:(1)4个;(2)3个;(3)1个或3个)7、判断下列说法是否正确?为什么?(1)平行四边形是一个平面。(X)(2)一个平面长是4cm,宽是2cm。(X)(3)一个平面把空间分成两部分。(V)(4)地球表面是一个平面。(X)(5)一条直线把它所在的平面分成两部分。(V)(6)四边形是平面图形。(X)(7)四边相等的四边形是平面图形。(X)。(8)三角形是平面图形。(V)(9)圆是平面图形。(V)(10)平面是绝对的平滑、无厚度,可以无限延展的抽象的数学概念。(V)(11)空间三点确定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025贵州瓮安县瓮水街道招聘公益性岗位人员20人模拟试卷及答案详解(新)
- 2025年福建省南平绿发建设工程劳务管理有限公司招聘14人考前自测高频考点模拟试题及参考答案详解1套
- 2025湖北郧西县第一批事业单位引进高层次及急需紧缺人才39人模拟试卷及答案详解(全优)
- 2025吉林新程国有资本发展控股有限公司公开招聘16人笔试题库历年考点版附带答案详解
- 2025云南中烟工业有限责任公司毕业生招聘333人启动笔试题库历年考点版附带答案详解
- 2025中国铁建房地产集团有限公司总部公开招聘笔试题库历年考点版附带答案详解
- 2025中国移动信息技术中心高层次人才社会招聘笔试题库历年考点版附带答案详解
- 2025中国宝武钢铁集团有限公司校园招聘笔试题库历年考点版附带答案详解
- 2025物业管理合同终止协议模板
- 2025网站购买协议(域名转让合同)
- 胰腺肿瘤WHO分类2025
- 牛羊猪兽药培训课件
- 环评公司质量控制管理制度
- 车间行车梁安装合同协议
- 工厂合同管理制度
- 血液透析患者自我管理与健康教育
- 医疗决策遗嘱书写范文
- 交通事故责任认定书复议申请书
- DB33-T 628.1-2021《交通建设工程工程量清单计价规范 第1部分:公路工程》
- 绳锯切割施工方案
- 职工基本医疗保险参保登记表
评论
0/150
提交评论