地质雷达在地层分界面探测中的应用.doc_第1页
地质雷达在地层分界面探测中的应用.doc_第2页
地质雷达在地层分界面探测中的应用.doc_第3页
地质雷达在地层分界面探测中的应用.doc_第4页
地质雷达在地层分界面探测中的应用.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

地质雷达在岩土层勘察探测中的应用王(中铁勘察设计院 ,北京,100000)摘要:建筑工程或大型基建项目岩土层勘察是基础保证,钻探和微测井地等方法都只能得到部分点的岩土层信息;地质雷达探测是利用不同界面的电性差异,反映整个空间岩土性质变化的特征。针对某勘察任务的需要,从地质雷达参数设计、资料处理和岩土层信息解释说明了在岩土层勘察应用,显示地质雷达探测能提供整个工程区域岩土勘察信息,为工程设计、施工提供可靠保障。关键字: 地质雷达,岩土勘察,电性结构,反射波处理;前言地质雷达(也称作探地雷达) 通过发射天线定向发送高频电磁波(1MHz1GHz) ,雷达波在介质中传播时,当遇到存在电性差异的介质或目标体时,电磁波便发生反射,返回地面后由接收天线所接收。在对接收的雷达波进行分析和处理的基础上,根据所接收的雷达波波形、强度、电性及几何形态进行分析,从而达到对岩土层信息和目标体的探测。大型基建工程岩土层信息在空间变化较大的区域,对其详细全面的勘察非常重要,由于受成本和工地条件的限制,通常采用布置部分钻探和微测井。而钻探和微测井地等方法都只能得到一个点的岩土层信息,利用间隔较大的多点测量对岩土层界面进行划分,不能准确确定表层的岩土层界面和结构,对岩土层信息的分析存在多解性。地质雷达探测是利用不同界面的电性差异,反映岩土性质变化的特征。 某客车公司厂房大型基建基础施工需要勘察浅地表岩土层特性,需对该厂区浅层地质情况进行勘探,为了了解该厂区的地质层位的详细分布和空间变化,设计了1500米长地质雷达测线。使用RIS探地雷达40MHz半屏蔽天线对该测线进行了连续剖面测量,为设计和施工提供指导。探测原理探地雷达作为无损检测的一项新技术,具有连续、无损、高效和高精度等优点。根据电磁波在有耗介质中的传播特性,探地雷达以宽频带短脉冲的形式向介质内发射高频电磁波(如40Mhz),当其遇到界面时会反射部分电磁波,其反射系数由介质的相对介电常数决定,通过对雷达主机所接收的反射信号进行处理和图像解译,达到识别反射层或隐蔽目标物的目的(见图)。图1 探地雷达工作原理示意图电磁波在特定介质中的传播速度V是不变的 ,因此根据探地雷达记录上的地面反射波与地下反射波的时间差T,即可据下式算出地下反射层的埋藏深度H: (1)式中,H即为目标层厚度;V是电磁波在地下介质中的传播速度,其大小由下式表示: (2)式中,C是电磁波在大气中的传播速度,约为3108m/s;为相对介电常数,取决于地下各层构成物质的介电常数。雷达波反射信号的振幅与反射系数成正比,在以位移电流为主的低损耗介质中,反射系数r可表示为: (3)式中,1、2为界面上、下介质的相对介电常数。反射信号的强度主要取决于上、下层介质的电性差异,电性差异越大,反射信号越强。雷达波的穿透深度主要取决于地下介质的电性和中心频率。导电率越高,穿透深度越小;中心频率越高,穿透深度越小,反之亦然。数据采集及参数确定测量参数选择合适与否关系到测量的效果,根据勘察任务的需要,现场测量开始前应该对雷达的采集参数进行试验和设定,测量参数的选择包括天线中心频率、时窗、采样率、采样点数以及发射与接收天线间距,参数设置的是否合理影响到记录数据的质量,至关重要。1)天线中心频率雷达天线频率的选择由勘探目标深度和表层介质的电性结构决定,一般高频天线分辨率高,但探测深度浅,而低频天线探测深度大,分辨率低。在满足分辨率且场地条件又许可时,尽量使用中心频率低的天线,如果要求的空间分辨率为x(单位m) ,围岩的相对介电常数为,则天线的中心频率(MHz) 由下式选定f=150x因本区勘探20米以上地层分层和异常,我们选择40Mhz非屏蔽天线连续剖面测量。2)探测深度与时窗长度 探测深度的选取是头等重要的,既不要选得太小丢掉重要数据,也不要选得太大降低垂向分辨率。一般选取探测深度H为目标深度的1.5倍。根据探测深度H和介电常数确定采样时窗长度(Range/ns): Range= 2H()1/2/0.3= 6.6 H()1/2例如对于地层岩性为砂层时,介电常数为5,探测深度为20m时,时窗长度应选为300ns。3)采样率采样率由Nyquist 采样定律控制,即采样率至少应达到记录到的反射波最高频率的2 倍。若天线中心频率为f (MHz) , 则采样率t (ns) 为1 000/ 6f 。4)采样点数对于SIR型雷达,采样点数有128、256、512、1024、2048可供选用,为保证高的垂向分辨,在容许的情况下尽量选大。对于不同的天线频率分f、不同的时窗长度Range,选择采样点数Samples应满足下列关系: Samples10-8*Range*f该关系保证在使用的频率下一个波形有10个采样点。对于40MHZ天线,500ns采样长度,采样点数应大于500,我们取1024。雷达数据处理由于地下介质相当于一个复杂的滤波器,介质对波的不同程度的吸收以及介质的不均匀性质,使得脉冲到达接收天线时,波幅减小,波形发生变化,电磁波干扰收到随机干扰,必须对信号进行处理,改善资料的信噪比,并使反射信号归位。1)应用带通滤波和背景去除技术,消除随机噪声压制干扰,提高有效反射波信噪比;2)采用自动时变增益和均方根能量增益技术补偿介质吸收,以提高深层反射信号能量;3)通过剖面上绕射波的时距曲线拟合,并结合钻孔分层资料,反演出该地区的电磁波传播速度,并以此速度进行反射波时-深转换,得到深度雷达反射剖面。4)电磁波在异常区或起伏界面上产生强绕射波,影响分层解释和判断,时间偏移处理使界面反射信号归位,获得高质量的地质雷达图像。图2 原始雷达剖面(上)处理后剖面(下)上图是经过上述处理步骤得到的地质雷达剖面对比,通过剖面上绕射波的时距曲线拟合,并结合钻孔分层资料,得到电磁波传播速度大约为0.16m/ns,并对反射波偏移处理,得到反射信号归位后的雷达剖面。数据解释与结论 根据反射波组的波形与强度特征,通过同相轴的对比追踪,并结合钻孔资料确定反射波组的地质分层含义,构筑地质地球物理解释剖面。并依据剖面的解释,获得各条测线的表层结构地质断面分层解释最终成果图。 该工程区的几个钻孔资料显示浅层分别为填土、粉质粘土和细砂及砂层。把测线经过的钻孔和剖面对比,可以看到钻孔分层和反射波在深度上基本吻合。从整个区域五条剖面上可见有几组贯穿剖面的反射同相轴,在全区基本相似。但反射剖面上的各界面反射波形在空间分别上也有一些差异。(1)因采用的40MHZ雷达天线,频率较低,受直达波影响,来自浅层2m以内填土和粘土界面上的反射不能分辨。(2)粘土和细沙电性差异较大,地层界面上就存在明显的反射波特征,该3米左右界面上的反射波同相轴平直而稳定。(3) 大约在7米附近有一个很强的反射同相轴,在未偏移的剖面上存在绕射波,说明该界面起伏,且横向变化较大。推断可能为砂层上下潜水面的影响。(4)在深度17米和22米附件有一个较弱的反射波同相轴,而且在横向上连续性较差,可能是砂岩层内沉积物差异而导致电性变化。图3 雷达剖面分层解释图 地质雷达是一种非破坏性的原位探测技术,现场直接提供实时剖面记录,图像清晰直观,工作效率高,重复性好。地质雷达技术可以区分浅层不同介质的界面,指出其精确深度和介质性质,探测结果反映的是连续的地下剖面的图像。同时能够呈现介质的横向变化特征,为基建工程勘察设计和施工提供详细的岩土层空间变化信息。参考文献1 李大兴. 探地雷达方法原理与应用M . 北京:地质出版社,1994. 1225.2 吴志刚. 探地雷达在城市建设工程质量检测中的应用J . 岩土工程师,2000 ,12 (2) :53 55. 3 徐占锋. 地质雷达技术及其在工程勘探中的应用J . 物探装备,1999 ,9 (4) :38 41.4 Haeni , F P. Use of ground2penet rating radar and continuou

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论