3.3 等差数列的前n项和(第一课时)_第1页
3.3 等差数列的前n项和(第一课时)_第2页
3.3 等差数列的前n项和(第一课时)_第3页
3.3 等差数列的前n项和(第一课时)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档2016全新精品资料全新公文范文全程指导写作独家原创1/433等差数列的前N项和(第一课时)33等差数列的前N项和(第一课时)教学目的1掌握等差数列前N项和公式及其获取思路2会用等差数列的前N项和公式解决一些简单的与前N项和有关的问题教学重点等差数列N项和公式的理解、推导及应教学难点灵活应用等差数列前N项公式解决一些简单的有关问题教学过程一、复习引入首先回忆一下前几节课所学主要内容1等差数列的定义D,(N2,NN)2等差数列的通项公式或PNQP、Q是常数3几种计算公差D的方法DDD4等差中项成等差数列5等差数列的性质MNPQM,N,P,QN6伟大的数学家,天文学家,高斯十岁时计算12100的小故事,小高斯的计算方法启发我们下面要研究的求等差数列前N项和的一种很重要的思想方法,“倒序相加”法。二、讲解新课1数列的前N项和的定义数列中,称为数列的前N项和,记为精品文档2016全新精品资料全新公文范文全程指导写作独家原创2/42等差数列的前项和公式1证明由此得13等差数列的前项和公式2把代入公式1即得24等差数列的前项和公式的函数解析式特征公式2又可化成式子,当D0,是一个常数项为零的二次式。5用方程思想理解等差数列的通项公式与前N项和公式等差数列的通项公式与前N项和公式反映了等差数列的五个基本元素A1,D,N,AN,SN之间的关系,从方程的角度看,它们可以构成两个独立方程(前N项和公式1、2是等价的),五元素中“知三求二”,解常规问题可以通过解方程或解方程组解决三、例题讲解例1某长跑运动员7天里每天的训练量(单位M)是75008000850090009500精品文档2016全新精品资料全新公文范文全程指导写作独家原创3/4100001050这位运动员7天共跑了多少米(课本P116例1)例2等差数列10,6,2,2,前多少项的和是54(课本P116例2)例3求集合MM|M7N,NN,且M100中元素的个数,并求这些元素的和(课本P117例3)例4已知等差数列中13且,那么N取何值时,取最大值解法1设公差为D,由得31332D/211131110D/2D2,132N1,152N,由即得65N75,所以N7时,取最大值解法2由解1得D2,又A113所以N14N(N7)49当N7,取最大值。对等差数列前项和的最值问题有两种方法(1)利用当0,D0,前N项和有最大值。可由0,且0,求得N的值。当0,D0,前N项和有最小值。可由0,且0,求得N的值。(2)利用由利用二次函数配方法求得最值时N的值。四、练习已知一个等差数列的前10项的和是310,前20项的和是1220,求其前项和的公式(课本P117例4)五、小结本节课学习了以下内容1等差数列的前项和公式12等差数列的前项和公式2精品文档2016全新精品资料全新公文范文全程指导写作独家原创4/43,当D0,是一个常数项为零的二次式4对等差数列前项和的最值问题有两种方法(3)利用当0,D0,前N项和有最大值。可由0,且0,求得N的值。当0,D0,前N项和有最小值。可由0,且0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论