calculus II-1_第1页
calculus II-1_第2页
calculus II-1_第3页
calculus II-1_第4页
calculus II-1_第5页
已阅读5页,还剩91页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 CalculusIISemester2 2014 2015 2 Instructor Dr YeHuajunT A MissLiuKaihuiOffice E409Tel 3620622 office 3620630 TA Email hjye uic edu hk Instructor lisaliu uic edu hk TA 3 4 ScoreSystem 5 SomenoticesonthisCourse Assignmentsmustbehandedinbeforethedeadline Afterthedeadline werefusetoacceptyourassignments Forthemid termtestandfinalexamination youcannotbringanythingexceptcalculator somestationeriesandwater Mobilearenotallowed Forthefinalexamination wecannottellyouthescorebeforetheARinformtheofficialresults Ifyouhaveanyquestiononthescore youcancheckthemarkedsheetviaAR 6 GeneralInformation TextbookCalculus EarlyTranscendentalFunctions3rdEditionSmithandMinton2007 McGrawHill InternationalEditionAdvantagestextbookfortwosemestersMoreapplications 7 GeneralInformation ReferencesS Salas E HilleandG J Etgen Calculus OneandSeveralVariables 8thedition JohnWiley Sons 1999 L D Hoffmann G L Bradley Calculus forBusiness EconomicsandtheSocialandLifesciences 9thedition McGrawHill 2004 J Stewart Calculus 4thedition Books Cole 1999 D Hughes Hallett A M Gleason W G McCallumetal Calculus SingleandMultivariable 2ndedition Wiley 1998 8 Chapter8InfiniteSeries 无穷级数 InthisChapter wewillknowsomeimportantconcepts InfiniteSeries 无穷级数 PowerSeries 幂级数 TaylorSeries 泰勒级数 FourierSeries 傅立叶级数 9 Section8 1SequencesofRealNumbers DefinitionofSequences 序列 Asequenceisalistofnumberswritteninadefiniteorder Thenotationis or or 10 Examples 11 DefinitionAsequenceconvergestoafinitenumberLifapproachesLwhenngoestoinfinity Wewriteandcallthesequenceconvergent 收敛 Wecallasequencedivergent 发散 ifitdoesnotapproachanyfinitenumberwhenngoestoinfinity 12 definitionoflimitsofsequence Givenanynumber thereexistsanintegerN suchthateveryn NimpliesQuestion definitionofdivergenceofsequence 13 CauchyTheorem 柯西收敛定理 Thesequenceshaveafinitelimitifandonlyifforany thereexistsanumberN 0 suchthatanyn N andn Nimplies 14 SUBSEQUENCES 子序列 Bychoosinginfinitelymanytermsfromasequence wegetasubsequence Thenewlyformedsequenceusuallyiswrittenas i e Theindicessatisfyand 15 Proposition IfasequenceconvergestoL theneverysubsequenceconvergestoL ExampleConsiderthesequence Thesubsequenceconvergesto 1 andthe subsequenceconvergesto1 Sincethetwosubsequenceshavedifferentlimits abovepropositiontellsusthatthesequencediverges 16 Exercise1 17 18 19 20 21 22 23 Exercise2 24 Exercise3 25 Exercise4 26 27 Exercise5 28 Section8 2InfiniteSeries 无穷级数 29 InfiniteSeries 无穷级数 ConsiderthesequenceSupposewestartaddingthetermstogether Wedefinethepartialsumsby 30 31 32 GeometricSeries 几何序列 33 34 35 Exercise6 36 Question 37 HarmonicSeries 调和序列 38 39 Exercise7 40 Section8 3TheIntegralTestandComparisonTests 积分判别法与比较判别法 Foragivenseries supposethatthereisafunctionfforwhichwherefiscontinuousanddecreasingandf x 0forallx 1 Weconsiderthenthpartialsum 41 42 IntegralTest 积分判别法 43 44 Exercise8 45 TheRemainderWedefinetheremaindertobe 46 47 ComparisonTests 比较判别法 Remark Wealwaysusesomenotableseriesforcomparison forexample geometricseries harmonicseriesandp series 48 49 Exercise9 50 LimitComparisonTest 51 52 Exercise10 53 Section8 4AlternatingSeries 交错级数 Analternatingseriesisanyseriesoftheformwhereforallk 54 AlternatingSeriesTest 交错级数判别法 55 56 EstimatingtheSumofanAlternatingSeries 57 58 Exercise11 59 Section8 5AbsoluteConvergenceandtheRatioTest 绝对收敛与比率判别法 AbsoluteandConditionalConvergence 60 61 62 TheRatioTest 63 64 Exercise12 65 TheRootTest 根式判别式 66 Exercise13b c d f g h 67 68 Section8 6PowerSeries 幂级数 69 ThePrimarytoolforinvestigatingtheconvergenceordivergenceofapowerseriesistheRatioTest 70 RadiusofConvergence 71 72 Remark 73 Exercise14 74 DifferentiationandIntegrationofpowerseries 75 76 Exercise15 77 Section8 7TaylorSeries 泰勒级数 78 TaylorSeries 泰勒级数 Supposethatwestartwithaninfinitelydifferentiablefunction f i e fcanbedifferentiatedinfinitelyoften Then wecanconstructtheseriescalledaTaylorseriesexpansionforf MaclaurinSeries 麦克劳林级数 79 Therearetwoimportantquestionsweneedtoanswer Doesaseriesconstructedinthiswayconverge Ifso whatisitsradiusofconvergence Iftheseriesconverges itconvergestoafunction Doesitconvergetof 80 81 TaylorPolynomialofdegreen n阶泰勒多项式 82 83 Taylor sTheorem 泰勒定理 84 85 86 87 SomecommonTaylorSeries 88 Section8 8FourierSeries 傅立叶级数 FourierSeries 89 Thereareanumberofimportantquestionswemustaddress WhatfunctionscanbeexpandedinaFourierse

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论