氮化铝半导体简介_第1页
氮化铝半导体简介_第2页
氮化铝半导体简介_第3页
氮化铝半导体简介_第4页
氮化铝半导体简介_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

氮化铝 AlN 半导体 梁龙跃201411922 1 前言 半导体材料的发展 1 第一代半导体 以Si Ge半导体材料为代表 2 第二代半导体 以GaAs InP半导体材料为代表 3 第三代半导体 以碳化硅 SiC 氮化镓 GaN 氧化锌 ZnO 金刚石和氮化铝 AlN 为代表的宽禁带半导体材料 具有禁带宽度宽 击穿电场高 热导率高 电子饱和速率高以及抗辐射能力高等优点 从第三代半导体材料和器件研究发展现状来看 较为成熟的是SiC和GaN半导体材料 其中SiC技术最为成熟 而ZnO 金刚石和AlN等宽禁带半导体材料的研究尚属起步阶段 2 AlN半导体的结构与性质 氮化铝 AlN AlN的晶体结构 1862年 Bfiegleb和Geuther利用熔融态Al与N2反应 第一次成功合成AlN化合物 AlN晶体具有稳定的六方纤锌矿结构 晶格常数a 3 110 c 4 978 纯AlN晶体是无色透明的 但由于晶体中存在的杂质离子和本征缺陷 AlN晶体通常呈黄色或琥珀色 根据实验验证和理论推算 AlN在 族半导体材料中具有最大的直接带隙宽度 约6 2eV AlN的多种优异性能 1 禁带宽度6 2eV 并具有直接带隙 是重要的蓝光和紫外发光材料 2 热导率高 电阻率高 击穿场强大 介电系数小 是优异的高温 高频和大功率器件用电子材料 3 沿c轴取向的AlN具有非常好的压电性和声表面波高速传播性能 是优异的声表面波器件用压电材料 4 氮化铝晶体与氮化镓晶体有非常接近的晶格常数和热膨胀系数 是外延生长氮化镓基光电器件的优选衬底材料 2 AlN半导体的结构与性质 AlN与其他常用半导体材料特性对照表 2 AlN半导体的结构与性质 3 AlN单晶的生长 AlN晶体生长的发展历史 1 1956年 Kohn等第一次生长出AlN单晶 直径0 03mm 长度0 3mm 2 1976年 Slack和McNelly利用升华凝结法 sublimationrecondensation 成功生长出AlN晶锭 3 目前 实验室中已经生长出直径大于2英寸的AlN晶锭 但仍有许多需要解决 AlN晶体生长的难点 1 AlN晶体具有极高的熔点温度 3500K 和较大的分解压 正常压力条件下 AlN在熔化前即会发生分解 因此无法从熔体中生长AlN晶体 2 AlN在高温下分解出的铝蒸汽很活泼 易腐蚀坩埚 需要选择耐高温 耐腐蚀的坩埚材料 3 AlN单晶的生长 AlN晶体的生长方法 1 Directnitridationofaluminum 铝直接氮化法 1 1960年 Taylar和Lenie第一次利用Al和N2高温反应的方法制备AlN单晶 并成功制得直径0 5mm 长度30mm的AlN晶棒和直径2 3mm的AlN单晶薄片 2 Schlessre等通过在N2气氛中气化金属Al的方法 成功制得面积50mm2的AlN单晶薄片 反应温度2100oC 反应时间2hrs 2 Highnitrogenpressuresolutiongrowth 高氮气压溶液生长法 当压力大于500MPa时 Al与N2的高温燃烧反应速率减慢 这是因为N2在高压条件下具有较高的热导率和较大的热容 导致燃烧反应过程中的热量损失增加 当压力大于650MPa时 燃烧反应被完全终止 此外 高压条件下N2的密度较大 有利于减少Al的蒸发和扩散 基于上述机理 Bockowski等利用HNPSG法成功制得白色针状AlN单晶 直径1mm 长度10mm 实验方案 将N原子溶解到液态Al中 温度1800 2000K N2压力2GPa 当溶液具有较高的过饱和度时 将得到纤锌矿结构的AlN单晶 但是过高的过饱和度将导致过高的生长速度 易得到中空针状结构的AlN单晶 3 AlN单晶的生长 3 Hydridevaporphaseepitaxygrowth 氢化物气相外延生长法 1 Akasaki等第一次提出利用HVPE法制备AlN单晶 主要化学反应方程式 AlCl3 g NH3 g 一AlN g 3HCl g 反应温度600 1100oC 2 对上述方法进行改进 以NH3和HCl作反应活性气体 Ar作承载气体 首先气态HCl与金属Al反应生成AICl3 然后生成的AICl3再与NH3反应生成AlN 主要化学反应方程式 HCl g Al l 一AlCl g A1Cl g NH3 g 一AlN s HCl g H2 g 通过上述方法 分别在SiC衬底和蓝宝石衬底上制得厚度75mm和20mm的AlN晶片 直径2英寸 HVPE法的突出优点是其生长速度快 可达到100mm h 大约是与金属有机气相沉积法和分子束气相外延法的100倍 3 AlN单晶的生长 4 Physicalvaportransportgrowth 物理气相传输生长法 PVT法又被称为sublimationrecondensation法 是生长AlN单晶最成功的方法 3 AlN单晶的生长 反应过程 AlN粉末首先在温度较高的坩埚底部被加热升华 成为气相AlN或者Al和N2 然后 经过气相传输到达温度较低的坩埚顶部 在N2气氛下重结晶 生成AlN单晶 反应温度 AlN的升华温度约是1800oC 但是为了获得较大的生长速率 200mm h 和高质量的AlN单晶 反应温度必须高于2100oC 但要低于2500oC 因为此时Al的蒸气压达到1atm 3 AlN单晶的生长 对坩埚材料的要求 熔点要高于2500oC 不能与Al N C等形成低温共熔体 不与Al蒸汽和N2反应 蒸气压要远远低于Al与N2形成AlN的蒸气压 综上所述 钨是生长AlN单晶最理想的坩埚材料 加热系统 石墨或钨加热元件 或者微波加热 利用PVT法 成功制得2 3mm2的AlN薄片和直径1mm 长度3mm的针状AlN晶棒 AlN薄膜生长技术 1 溅射法以N2为反应气体 用Ar稀释载入反应腔体 以高纯Al为溅射靶 反应形成AlN薄膜 工作气压 氮气浓度 溅射功率和衬底温度及种类等参数对薄膜的结晶取向和表面形貌影响很大 2 PLDPLD 脉冲准分子激光沉积 法具有沉积温度低 生长速率高以及保持薄膜与靶成分一致等优点 特别适合多组分化合物薄膜 PLD制备AlN薄膜一般有两种方法 1 直接剥离烧结AlN陶瓷靶 2 在N2或NH3气氛下剥离纯Al靶反应生成 4 AlN薄膜的制备 国内外研究进展 2010年 美国 2002年启动 半导体紫外光源 研究计划 美国TDI公司是目前完全掌握HVPE 氢化物气相外延 法制备AlN基片技术 并实现产业化的唯一单位 TDI的AlN基片是在 0001 的SiC或蓝宝石衬底上淀积10 30微米的电绝缘AlN层 主要用作低缺陷电绝缘衬底 用于制作高功率的AlGaN基HEMT 目前已经有2 3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论