




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
长沙学院毕业论文 光纤通信的发展趋势探讨毕业设计目 录摘 要IABSTRACTII前 言1第1章 概 述21.1 光纤通信发展史21.2 光纤通信的基本构成2第2章 光纤通信向大容量、宽带化、超长距离发展32.1 大容量、宽带化的发展32.2 DWDM的发展52.3 超长距离光纤通信的发展6第3章 多种业务接入MSTP73.1 MSTP的应用73.2 MSTP的发展9第4章 统一的网络管理平台104.1 统一的网络管理平台104.2 TMN11第5章 网络保护机制和传输体制125.1 网络保护机制125.2 SDH/SONET体制146.1 智能化光网络166.2 全光网络的发展18第7章 光纤到家庭FTTH的发展197.1 FTTH197.2 FTTH的发展20总结21致 谢22参考文献23II 长沙学院毕业论文 前 言电信世界正逐步形成充满竞争和挑战的局面,电信和数据通信融合为信息通信的时代已经成为现实,新的有竞争力的公司以更低的价格引入新的服务。随着新技术的不断出现,政府条例的不断放宽,信息产业正在迅速的全球化。今天,有效的信息传输已成为竞争的关键因素之一。因特网的应用和光技术的快速发展使网络发生了根本变化,动态波长和快速波长提供需求是光网络的主要趋势之一。随着这种转变的继续,目前采用波长路由方式承载突发的因特网业务将存在电路交换网络同样的种种缺陷。未来电信级光网络仍然是基于电路的假设驱动了以前的研究。光网络的规模在迅速扩展,光传送网的角色从原来的大容量带宽传送转变为提供端到端的服务连接。本文第一章介绍了光纤通信的发展史和光纤通信的基本构成;第二章介绍了光纤通信向大容量、宽带宽、超长距离发展的趋势,重点介绍了DWDM技术的应用和超长距离传送的几个关键技术;第三章首先介绍了多业务接入MSTP在网络中的应用情况,然后详细介绍了MSTP技术的发展历史和现况;第四章简单介绍了目前光纤通信网管系统的不足和统一网管的要求,最后表明了光纤通信网管系统的发展方向TMN,及其在通信网络中的应用情况;第五章对光纤通信中的各种保护机制进行了简单介绍,并介绍了光纤通信中的传输体制SDH/SONET最新的发展:支持集成通用组帧程序(GFP)、链路容量调节方案(LCAS)和自动交换光网络(ASON)标准;第六章介绍光通信网络向智能网络发展的趋势,ASON技术在智能网络中的应用及实现全光网络技术的意义,然后介绍了全光网络的组成结构;第七章表明FTTH是光纤接入的最终形式,本章还介绍了实现FTTH的几种技术,以及FTTH光纤接入技术必然在中国取得很大的发展,FTTH的规模商用给中国FTTH产业一个正名机会。第1章 概 述1.1 光纤通信发展史80年代一项最重要的技术发展是光纤通信成为一个主要的国际性产业。用光纤敷设的总长度可以表明其发展的程度。据估计,截止2001年底,全世界敷设的光纤总长度就达3.81亿英里。1955年,英国科学家卡帕尼,发明了玻璃光导纤维。1960年被称为光纤之父的华人高锟等人首先提出了用低吸收的光纤做光通信。1970年,美国的柯林公司做出了每公里20分贝的低损耗光纤,贝尔实验室研制成功室温连续运转的半导体激光器,这奠定了光纤通信的基础。七八年以后,美国在芝加哥市首先开辟了第一条光纤通信线路。再过10年左右,1.55微米波长的光纤损耗率低到0.2个分贝每公里,这样低的损耗就可以传输很远。在同年,英国的南安普敦大学,发明了掺铒光纤放大器。1989年美国首次进行了波分复用的光通信实验,是四个频道的,四个通道。1998年,美国实现了密集波分复用的长途光通信,它的传输速率达到每秒一个太比特,从此,我们就进入了这样一个高速的时代,太比特的时代。 中国光通信的历史是在20世纪80年代的上海首先铺设了一条1.8公里的数字光通信线路。20世纪80年代投资的武汉邮电研究院,研制光纤的器件和光纤本身,现在也成为光纤器件的一个最大的研究单位。1995年到1998年,上海交大完成了九五项目,四个节点的全光城域网、实验网。20世纪90年代起,全国各地都普遍铺设和使用单路的光纤通信线路,截止到2004年底,全国敷设光纤总长度已超过350万公里。 2000年底中国网通公司建成了3400公里的波分复用的光纤通信网;2001年完成了863项目,中国高速示范网;2000年,国家自然科学基金资助了一个项目,中国高速互联研究实验网。现在,我们国内有很多的公司可以批量生产光纤通信的系统和器件。1.2 光纤通信的基本构成1.2.1光纤 光纤由纤芯、包层与涂层三大部分组成。光纤按模式分为多模光纤和单模光纤,对于公用通信网的骨干网,包括市内骨干网、接入网的光纤线路,需要使用单模光纤;专用的局域网和其它短距离光纤线路使用多模光纤。光纤的工作波长有短波长和长波长,短波长是0.85m,长波长则是1.31m和1.55m两种。光纤的损耗在1.31m为0.35dB/km,在1.55m为0.20dB/km。波长1.31m光纤的色散为零,而波长1.55m光纤有最低损耗却有不小的色散(Chromaticdispersion,简写dispersion),对长距离、高速率脉冲信号传输有限制。经重新设计的光纤,使零色散波长从1.31m移位至1.55m,这样的单模光纤就称为色散移位光纤,简写DSF(dispersionshiftedfiber)。为了充分发展WDM/DWDM系统,应用波长1.55m存在小量的色散恰恰足够抵消FWM(四波混频)的影响,称为非零色散光纤,简写NZDF(non-zerodispersionfiber)。1.2.2光源 光源是光纤通信系统中的关键光子器件。光纤通信对光源器件的要求工作寿命长(光源器件寿命的终结是指其发光功率降低到初始值的一半或者其阈值电流增大到其初始值的二倍以上)、体积小、重量轻。常见的光源器件有激光二极管(LD)和发光二极管(LED)两种。O.5m短波长光源常采用GaAlA/ GaAs双异质结构,而长波长1.31.55m则采用InGaAsPlnp隐理式异质结构。而WDM系统须利用长波长光源器件,它不仅要求激光管的发射波长高度稳定,保证器件与波导之间实现最佳耦合,插入损耗小,同时要求能把多路激光管和必要的附属电路集成在同一芯片上,使得多路光载波信号能够在一根光纤中加以传输。近年来研制的多波长光源器件主要是把多路激光管排成阵列,连同一个导形耦合器,利用硅的“平面光路”平台技术制成混合集成光组件,其结构趋于采用光纤光栅的外腔激光管结构。1.2.3光检测器 光检测器件通过光/电转换将信号通信信息从光波中分离检测出来。光检测器件的要求灵敏度高、响应度高、噪声低、工作电压低、体积小重量轻寿命长。常见的光检测器有PN光电二极管、PIN光电二极管和雪崩光电二极管(APD)。第2章 光纤通信向大容量、宽带化、超长距离发展2.1 大容量、宽带化的发展在世界网络带宽保持了50%-100%的年增长速率的同时,中国的干线业务量和带宽需求的实际年增长率均超过了200%。根据美国跨大西洋Internet干线流量统计,中国近几年国内干线数据业务量年增长260%。国际Internet带宽能力年增长245%,五年累增大约100倍。传统的光纤通信发展始终在按照电信号的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每个比特的成本大约下降30%40%,因而高比特率系统的经济效益大致按指数规律增长。单路波长的传输速率受限于集成电路材料的电子和空穴的迁移率;还受限于传输媒质的色散和极化模色散;最后受限于系统的性能价格比。Lucent朗讯科技公司宣布实现了单信道160Gbit/s的传输速率,而目前商用系统从45Mbs增加到10Gbs,可以携带12万条话路,其速率在20年时间里提高了2000倍,比同期的微电子技术的集成度增长速度还要快得多。高速系统的出现增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体业务提供了实现的可能。目前,10Gbit/s系统已大批量装备网络,40Gbit/s系统已经商品化进入实用阶段。从网络应用看,带10Gbit/s接口的路由器已经大量应用,带40Gbit/s接口的路由器也已经进入大量应用阶段,为了提高核心网的效率和功能,核心网的单波长速率向40Gbit/s发展是合乎逻辑的。总的看,采用40Gbit/s传输的主要优势有:(1)更有效地使用传输频带,频谱效率较高; (2)如果40Gbit/s的成本降到10Gbit/s实际成本的2.5倍以下时,就达到了合理应用点,就有条件实现规模商用,降低传输成本; (3)由于只用一个网元代替了四个网元,减少了OAM的成本、复杂性以及备件的数量;(4)提高了核心网的效率和功能。从实际应用看,对于40Gbit/s传输系统,必须用外调制器;能具备足够输出电压驱动外调制器的驱动集成电路还不够成熟;沿用多年的NRZ调制方式能否有效可靠地工作于40Gbit/s还没有把握,必须转向性能更好的普通归零(RZ)码乃至调制效率更高的其他调制方式,例如载频抑制的RZ(CS-RZ)码,差分相移键控RZ(DPSK-RZ)码,啁啾的RZ(CRZ)码,超级CRZ(SuperCRZ)码,双二进制码(D-RZ),伪线性RZ码,光孤子(Soliton)调制方式等。从历史经验看,只有成本降到2.5倍以内才有可能获得规模应用。近年来,能够普遍应用的基于单波道的最高传输容量一直停留在SDH 10Gb/s。40Gb/s的应用需求仍然存在,但它在节点技术、网络应用和系统的性能价格比等方面存在的问题仍然没有很好地得到解决。另外,由于存在具有部分可替代性的解决方案(如DWDM),这也在一定程度上进一步影响了40Gb/sSDH系统大范围走向商用的步伐。对于短距离传输,无须色散补偿、光放大器和外调制器,40Gbit/s系统具有最低的单位比特成本,上述问题不是障碍。40Gbit/s的应用已经由短距离互联应用开始,包括端局内路由器、交换机和传输设备间的互联,乃至扩展至城域网范围和短距离长途应用。随着通信技术的发展,新业务不断涌现,特别是IP业务的迅猛崛起,导致全球信息量呈级数增长,通信业务由传统单一的电话业务转向高速IP数据和多媒体为代表的宽带业务,对通信网络的带宽和容量提出了越来越高的要求。光纤存在巨大的频带资源和优异的传输性能,是实现高速、大容量传输的最理想的传输媒质,进一步扩容传输系统、降低每比特传输成本的唯一出路就是转向使用光的复用技术。 2.2 DWDM的发展光通信系统可以按照不同的方式进行分类如果按照信号的复用方式来进行分类可分为频分复用系统FDM-Frequency Division Multiplexing、时分复用系统TDM-Time Division Multiplexing、波分复用系统WDM Wavelength Division Multiplexing和空分复用系统SDM-Space Division Multiplexing。传统的光纤传输一般在一个波长信道上进行,如果忽略激光器的线宽和啁啾效应,则对应1550nm处的高斯脉冲,即使采用光时分复用(OTDM)技术使信号速率达100Gbit/s,其所用带宽也仅为光纤带宽的一小部分,考虑到EDFA技术可以在1550nm的光纤低损耗窗口约35nm宽度的窗口提供增益,为了利用这些资源,采用光学分光元件分离波长,利用了一根光纤同时传输多个不同波长的光载波的特点,把光纤可能应用的波长范围划分成若干个波段,每个波段作一个独立的通道传输一种预定波长的光信号,光波分复用的实质是在光纤上进行光频分复用OFDM,从而使光纤的传输容量大幅度增加。为了区分以前在1310nm和1550nms所进行波长复用传输,将这项技术称为密集波分复用(DWDM)技术。近来波分复用技术的大量应用,使光传输速率已在向每秒太比特的数量级进军。密集波分复用DWDM-Dense Wavelength Division Multiplexing技术是利用单模光纤的带宽以及低损耗的特性采用多个波长作为载波,允许各载波信道在光纤内同时传输与通用的单信道系统相比密集,ITU-T G.692建议DWDM 系统的绝对参考频率为193.1THz,对应的波长为1552.52nm。不同波长的频率间隔应为100GHz的整数倍,对应波长间隔约为0.8nm的整数倍。DWDM不仅极大地提高了网络系统的通信容量,充分利用了光纤的带宽,而且它具有扩容简单和性能可靠等诸多优点,特别是它可以直接接入多种业务更使得它的应用前景十分光明。1999年Nortel北电公司在Telecom99上宣布总容量6.4Tbit/s的最高记录。但这两个记录刚刚宣布不久,在11月份的新发明展示会上,Lucent宣布实现了DWDM16Tbit/s的传输实验记录。而近几年来波分复用系统技术发展十分迅猛,目前1.6Tbit/s的波分复用WDM系统已经开始大量商用,2001年日本NEC和法国阿尔卡特公司分别在100km距离上实现了总容量为10.9Tbit/s(27340Gbit/s)和总容量为10.2Tbit/s(25640Gbit/s)的传输容量记录,北电又宣布将在2001年提供能在一根光纤上传输64TbS的DWDM商用系统。此系统最初将可以从40到80GbS向上进行扩展,最高达到64TbS。此系统使得北电在Teecom 99上独占光通信的鳌头。这几年,光传输系统容量基本上在几十Tbit/s量级徘徊,新记录主要表现在采用各种不同传输新技术和获得更长无电中继距离方面。2.3 超长距离光纤通信的发展光纤通信自从问世以来,一直向着两个目标不断发展。一是延长中继距离,二是提高传输速率(容量)。光纤的色散、色散斜率、偏振模色散、非线性效应(四波混频交叉相位调制等)等性能对超长距离光纤通信提出了新的严格要求。由于光纤的吸收和散射会导致光信号的衰减,光纤的色散将使光脉冲发生畸变,导致误码率增高,信号传输质量降低,限制了通信距离。为了满足长距离传输的需要,必须在光纤线路上加入中继器,以补偿光信号的衰减和对畸变信号进行整形。光纤放大器的出现,尤其在拉曼光纤放大器实用之后,为增大无再生中继距离创造了条件。同时,采用有利于长距离传送的线路编码,如RZ或CS-RZ码;采用FEC、EFEC或SFEC等技术提高接收灵敏度;用色散补偿和PMD补偿技术解决光通道代价和选用合适的光纤及光器件等措施,已经可以实现超过STM-64或基于10Gbit/s的DWDM系统,4000km无电再生中继器的超长距离传输。利用光孤子在一定条件(光纤的反常色散区及脉冲光功率密度足够大)下,能够长距离不变形地在光纤中传输的特性,完全摆脱了光纤色散对传输速率和通信容量的限制,其传输容量比当今最好的通信系统高出12个数量级,中继距离可达几百km。它被认为是下一代最有发展前途的传输方式之一。 2.3.1 超长距离传输(Ultra long haul,ULH) OFC-2003报导的最长传输距离也是11000km,传输容量为3.73Tb/s。另外,OFC-2003报导的最高传输速率6.4Tbs系统的传输距离长达3200km。2004年初武汉邮电科学研究院承担的“863”ULH项目顺利通过了863专家组的验收。此项目是在该院已投入商用的1.6Tb/s DWDM系统的平台上,实现了在5000多公里实际G.652/655光纤上的ULH传输,其中某些关键技术已经应用于国内一级干线工程。2.3.2 拉曼光纤放大器(distributed Raman amplification)受激拉曼散射(SRS)将一小部分入射光功率转移到频率比其低的斯托克斯波上;如果一个弱信号与一强泵浦光波同时在光纤中传输,并使弱信号波长置于泵浦光的拉曼增益带宽内,弱信号光即可以得到放大。近年来光纤拉曼放大器成为研制开发的热点,它具有许多优点:(1)增益介质为普通传输光纤,与光纤系统具有良好的兼容性;(2)增益波长由泵浦光波长决定,不受其它因素的限制,理论上只要泵浦源的波长适当,就可以放大任意波长的信号光;(3)增益高、串扰小、噪声指数低、频谱范围宽、温度稳定性好。2.3.3 光孤子(soliton) 孤子又称孤立波(Solitary wave),是一种特殊形式的超短脉冲,或者说是一种在传播过程中形状、幅度和速度都维持不变的脉冲状行波。在光纤通信中的频移时,由于折射率的非线性变化与群色散效应相平衡,光脉冲会形成一种基本孤子-光孤子,光孤子能在光纤中传播的长时间保持形态、幅度和速度不变的光脉冲。利用光孤子特性可以实现超长距离、超大容量的光通信。 光孤子通信系统实验已达到传输速率1020Gbit/s,传输距离1300020000公里的水平。实际的光孤子通信存在许多技术难题,但目前已取得的突破性进展使我们相信,光孤子通信在超长距离、高速、大容量的全光通信中,尤其在海底光通信系统中广泛应用。2.3.4 遥泵技术(RemotePump)遥泵技术是用于单段长跨距传输的专门技术,主要解决单长跨距传输中信号光的OSNR受限问题。在传输光纤的适当位置熔入一段掺铒光纤,并从单段长跨距传输系统的端站(发射端或接收端)发送一个高功率泵浦光,经过光纤传输和合波器后注入铒纤并激励铒离子。信号光在铒纤内部获得放大,并可显著提高传输光纤的输出光功率。随路方式中泵浦光还可对光纤中的信号光进行喇曼放大,进一步增加传输距离,并可节省光纤资源。遥泵技术通常还可综合其他新技术,如光纤有效截面管理、二阶喇曼泵浦、两级遥泵增益区等。第3章 多种业务接入MSTP3.1 MSTP的应用多业务传送平台(MSTP)国外称为多业务提供平台(MSPP)或下一代SONET/SDH是指基于SDH技术,同时实现TDM、ATM、以太网等业务的接入、处理和传送,提供统一网管的多业务节点,其核心处理仍然是基于SDH VC通道的。MSTP是基础传输网络顺应业务网发展需求而提出的综合解决方案的概念,融合了ITU-T及其他标准化组织定义的多种关键技术。数据业务的迅速增加,不同的业务采用不同的组网方式,随着SDH/DWDM与ATM/IP技术日趋融合,光传送网络必须具备更强的IP、ATM、TDM综合传送能力,以承载DSLAM、NGN、3G等新型主业务。光网络成为统一的多业务传送平台,在一个物理环路上同时实现RPR环、SDH环、ATM VP环三个逻辑环路,提供环网带宽共享,实现全环网带宽统计复用。图3.1.1 光网络的多业务传送平台示意图 数据网需要MSTP提供更高等级的以太网业务来满足高级别大客户专线的需要;数据网需要MSTP提供端到端的全业务覆盖,而这种覆盖可以通过MSTP的基础SDH已经具备或者即将具备的全覆盖来实现;数据网需要MSTP提供末梢远距离组网和安全保证。基于广覆盖的SDH网络的MSTP技术(在运营商已经存在密度比较大的SDH网上,增加单板可以直接升级到MSTP)能够提供更快捷和可靠的端到端延伸,显然是一种完善当前数据网络延伸层的一个好方法。SDH RingVP RingRP RingMSTP光网络NGN综合接入L2/L3IP/ATMDSLAMBTSNode BPSTN接入设备业务接入PSTNGSMATMGSRNGN软交换3G核心交换业务传送图3.1.2 MSTP光网络业务传送示意图3.2 MSTP的发展MSTP不是一种新的技术,从出现到现在已有5、6年的历史,并一直处于不断发展完善之中,到目前也尚未形成完善的MSTP国际化标准。MSTP技术的发展主要体现在对以太网业务的支持上,以太网新业务的QoS要求推动着MSTP的发展。一般认为,MSTP技术发展可以划分为三个阶段。第一代MSTP的特点是提供以太网点到点透传。它是将以太网信号直接映射到SDH的虚容器(VC)中进行点到点传送。在提供以太网透传租线业务时,由于业务粒度受限于VC,一般最小为2Mb/s,因此,第一代MSTP还不能提供不同以太网业务的QoS区分、流量控制、多个以太网业务流的统计复用和带宽共享以及以太网业务层的保护等功能。第二代MSTP的特点是支持以太网二层交换。相对于第一代MSTP,第二代MSTP作了许多改进,它可提供基于802.3x的流量控制、多用户隔离和VLAN划分、基于STP的以太网业务层保护以及基于802.1p的优先级转发等多项以太网方面的支持。但是,第二代MSTP仍然存在着许多的不足,比如不能提供良好的QoS支持,业务带宽粒度仍然受限于VC,基于STP的业务层保护时间太慢,VLAN功能也不适合大型城域公网应用,还不能实现环上不同位置节点的公平接入,基于802.3x的流量控制只是针对点到点链路,等等。 第三代MSTP的特点是支持以太网QoS。在第三代MSTP中,引入了中间的智能适配层、通用成帧规程(GFP,)高速封装协议、虚级联和链路容量调整机制(LCAS)等多项全新技术。因此,第三代MSTP可支持QoS、多点到多点的连接、用户隔离和带宽共享等功能,能够实现业务等级协定(SLA)增强、阻塞控制以及公平接入等。此外,第三代MSTP还具有相当强的可扩展性。可以说,第三代MSTP为以以太网业务为代表的IP业务的发展提供了全面的支持。可以预期,市场对MSTP 的需求将会越来越强劲,传统SDH将会逐步被MSTP代替。虽然最终MSTP会演化到哪一种版本目前并没有定论,但其将一统下一代城域光网络市场似乎已不用怀疑。一方面,MSTP保留了SDH固有的交叉能力和传统的SDH/PDH业务接口,继续满足TDM业务的需求;另一方面,MSTP提供ATM处理、以太网透传、以太网L2交换、RPR处理、MPLS处理等功能来满足对数据业务的汇聚、梳理和整合的需求。 MSTP技术仍在不断地发展完善之中。为了进一步提升以太网业务的传送性能,解决各个节点之间的公平性问题,部分厂商在MSTP中引入了对RPR的支持,即内嵌RPR。通过内嵌RPR,MSTP可以解决城域网中话音和数据业务传输之间的矛盾,即利用传统SDH技术支持TDM业务的传输,而利用RPR技术实现数据业务的更高效传输。不过RPR仅仅支持环形网络拓扑,为此部分厂家在MSTP设备中又引入了MPLS技术,MPLS可以实现环间业务调度,为用户提供一条端到端虚链路连接通道,实现用户间的资源共享和安全隔离。内嵌RPR/MPLS可以更有效地保证业务QoS分级和带宽公平性,实现更强的数据处理功能,达到综合承载多种业务的目的,是MSTP设备的发展方向。此外随着智能光网络技术的逐步成熟,MSTP设备将会成为智能光网络中的节点。第4章 统一的网络管理平台4.1 统一的网络管理平台目前网管的状况是:实行分层分级管理,层次多、设备多( DXC、ADM、DWDM等设备网管不统一);网络扩展性差;不能实现端到端(跨多环)的保护要求;不能实现实时管理;网络拓扑的变化不能实时反映到网管。电信网络正在朝着综合化、全球化、智能化、个人化的方向发展。实现统一的传输网监控并顺利地纳入TMN是光纤网发展的目标之一,而目前的设备不具有这一能力。PDH的网管帧结构中的管理比特少、网管能力差;SDH增强了网管的能力,在帧结构中增加了丰富的管理、维护用开销比特,因此SDH以其丰富的管理开销和特有的复用结构为TMN的应用提供了充分的舞台。然而由于各厂商的信息模型不同,使得不同厂商的网管系统实际上不能互通,其关键在于接口上不可以互通,在短期内SDH还不能达到多厂商的运行环境。WDM系统在操作、管理、维护和配置等功能上都在不断增强,WDM系统设置了重要的网管监控通路,以传输WDM系统的网管信息,其网管更接近TMN模式。统一的网管平台系统具有以下特性: (1)统一的网管平台;(2)强大的分层扩展能力和大规模网络的管理;(3)业务规划系统、端到端的业务配置;(4)综合业务传送网络的管理,VPN等多种增值业务应用;(5)网络优化工具;(6)网络故障分析与定位;(7)完备的网管安全体系;(8)强大的日志管理、丰富的运维信息管理系统; (9)丰富的开放接口;(10)多厂家互通能力。4.2 TMN在由多厂商提供的通信网设备(包括网路设备本身和网络管理系统等)的通信网环境下,各个网管系统的互连、互通、互操作(即多厂商网管系统兼容性)和网络设备管理的一致性(也称为多厂商网路设备兼容性)是实现通信网网络管理系统建设目标的基础之一(多厂商网管系统兼容性和多厂商网路设备兼容性在一起被称为多厂商设备兼容性)。但由于种种原因(包括技术、市场、历史等方面),这个问题长期以来未得到满意的解决。现在越来越多的国家已经认识到多厂商环境的益处,要想在购买电信设备时做到经济有效,需要网络设备和操作系统供货商之间在设备管理方面进行竞争。同时取消电信垄断(例如通过放松管制)也形成了业务的竞争并加剧了厂商之间的竞争。为使迅速引进的通信新设备和新技术可由集中操作中心进行最佳的管理,为数不多的专家在中心得到集中利用,技术人员得到计算机化的操作系统 (OS)的支持,TMN及其相关的接口标准都是通信网特别需要的,TMN 成为全球普遍接受的电信网络管理框架。 电信管理网TMN(Telecommunications Management Network)由ITU-T提出,现已是全球接受的电信管理框架,且许多其他组织也确认了TMN标准TMN是一系列的标准, TMN是一种开放的网络结构,TMN是一个提供管理型业务的专业网,TMN是一种研究和开放网管系统的技术,TMN提供了网管系统平滑过渡的技术手段,TMN提供了一种软件重用的机制。TU-T TMN标准未来的发展将在很大程度上受到各方面因素的影响,如新的电信技术与相关的管理需求,支持分布式管理的新的计算与通信技术,以及有关TMN的论坛及国际组织所从事的活动。TMN标准化工作第4研究组(SG4) I为迎接这种挑战,SG4采取了一种双轨策略,即以现有技术满足今天的需求,又接纳不断涌现的计算与通信技术,为明天的需求做准备。这种策略产生的最显著影响了TMN 的原则与结构、规范TMN需求与信息模型建立技术,以及建立信息模型等几方面。TMN标准核心是在TMN 实体之间的接口上进行信息通信。目前已经制定出相当数量的标准,用来对交换、信令、ISDN、SDH、ATM/BISDN和GSM进行管理。TMN的原则和结构,主要目标是支持多种通信技术,尤其是分布式管理模式。未来TMN标准规范的发展将取决于ITUT与其它论坛和国际组织(如网管论坛、ATM论坛和对象管理组织等)的伙伴关系, 以及分布处理概念和计算机技术。第5章 网络保护机制和传输体制5.1 网络保护机制 现在的社会对信息的依赖性越来越强,通信网络一旦出错或失效,将会给社会造成极大的损失,因此要确保网络的生存性。网络生存性泛指网络在经受各种故障、甚至灾难性大故障后仍能维持可接受的业务质量的能力,它属于网络完整性的一部分。保护机制是指采用预先规划的方法分配网络资源,用硬件冗余的办法来保证网络对故障的恢复,故失效恢复时间短。在光纤通信中,多种网络保护方式并存,网络保护的方式可以分为两大类,即:路径保护和子网连接保护。路径保护包括线性系统的复用段保护、环网的复用段保护和环网的通道保护等等,都已得到了广泛的应用。但子网连接保护(SNCP:Sub-network Connection Protection)更具组网灵活的特点,再加上各设备厂家对该保护方式都在不断地完善,因而也正在得到越来越多的关注。5.1.1通道保护PP(Path Protection) 通道保护环的业务保护是以通道为基础的,是否进行保护倒换要根据出、入环的个别通道信号质量的优劣来决定。通道保护环一般采用1+1保护方式,即工作通道与保护通道在发送端永久性地桥接在一起,接收端则从中选取质量好的信号作为工作信号。在进行通道保护倒换时只需在接收端把开关从工作通道倒换到保护通道上,所以不需要使用APS倒换协议,其保护倒换时间小于50ms。常用的通道保护环有二纤单向通道保护环和二纤双向通道保护环两种。 5.1.2复用段保护MSP (Multiplex Section Protection) 复用段共享保护环的工作通道传送业务,其保护通道则留作业务信号的保护之用,复用段共享保护环需要使用APS协议,其保护倒换时间为50ms,分为二纤双向复用段共享保护环和四纤双向复用段共享保护环两种保护方式。复用段共享保护环多用于STM-16和STM-64干线网以及中继网。它的主要优点是:在业务量呈均匀分布的情况下有些容量可重复利用,这种情况下,同样的保护容量适用于不同的故障情况,故复用段共享保护环保护方式能提供高容量使用效率。另一方面,复用段共享保护环只能用于环形网络拓扑结构,而且节点数最多不能超过16个,同时网络中环的容量用满时,就要增加一个新环。目前,复用段共享保护环已被确定用来保护环上的所有传输容量。 5.1.3子网连接保护SNCP (SubNetwork Connection Protection)子网连接保护是指对某一子网连接预先安排专用的保护路由,这样一旦子网发生故障,专用保护路由便取代子网担当在整个网络中的传送任务。是ITU-T建议中的一个保护功能,采用11单端倒换的保护设置,主要用于实现对跨子网业务的进行保护,举用双发选收的特点,不需协议,保护的所有监测、倒换动作都是单站完成,具有很大的灵活性和稳定性。可以提供环带链,环相切,环相交,两环DNI连接防节点失效等组网形式的保护。子网连接保护(SNCP)是唯一的可适用各种网络拓扑结构且倒换速度快的业务保护方式,是一种专用的保护机理,可用于任何物理结构(如网状网、环、或混合结构)的电信传输网及分层中的任何通道层,可以作为保护通道的一部分,也可作为整个端到端的通道。子网连接保护包括利用固有监测的子网连接保护(SNC/I)和利用非介入式监测的子网连接保护(SNC/N)。固有监测是指利用网络的固有可用信息如连接状态、性能数据等,来间接地检测连接情况,能防止服务层故障。非介入式监测是指利用对原来特征信息的只听监测(非介入)来直接地监测连接情况,能防止连接性故障。5.1.4 双节点互联保护DNI(double network internal)环网间的环间互通业务可分为SNI(单节点互通连接)方式和DNI(双节点互通连接)方式,对于前者,可以采用线路保护的方式对其进行保护,但这种方式只能对光纤和光发送/接收端口进行保护,在互通节点失效的情况下无法进行保护。在后一种方式下,G.842建议对环间业务的保护方式作出了具体的规定,由于该建议规定了一个环上的两个互通节点分别在复用段共享环和通道环工作方式下的保护方式,因此采用该建议规定的保护方式,可实现不同厂家设备、不同保护方式组成的两个环网间互通业务的保护,且对光纤失效、节点失效均可进行保护。5.1.5 虚拟环共享光路,就是低速环网借用高速环网的物理通道作为自己的逻辑通道来实现逻辑上的业务成环。设备引入逻辑子系统,采用专有的共享光纤虚拟路径保护技术,可将一根物理光纤等效为多根逻辑光纤,在一根光纤中可同时支持多种保护方式,支持上述保护方式在同一光纤上组合,保护级别可按VC-12或VC-4级别设置,实现业务分类保护和复杂网络的保护。5.2 SDH/SONET体制光同步数字体系是90年代发展起来的新一代通信体制。传统的光纤通信是以准同步传输体制(PDH)为基础的,随着网络日趋复杂和庞大,以及用户要求的日益提高,这种传输体制暴露出一系列不可避免的内在缺点,一种有机地结合高速大容量光纤传输技术和智能网元技术的新传输体制光同步传送网应运而生。在1985年,Bellcore提出SONET(Synchronous Optical Network同步光纤网)标准,美国国家标准协会(ANSI)通过 一系列有关SONET标准。1988年,国际电报电话咨询委员会CCITT(现改为国际电信联盟标准部ITU-T)在接受SONET概念的基础上,制定了SDH(Synchronous Digital Hierarchy,同步数字系列)标准,使之成为不仅适于光纤也适于微波和卫星传输的通用技术体制,与SONET有细微差别。 SDH/SONET定义了一组在光纤上传输光信号的速率和格式,通常统称为光同步数字传输网,是宽带综合数字网B-ISDN的基础之一。SDH/SONET采用TDM技术,是同步系统,由主时钟控制,精度10-9)。两者都用于骨干网传输。是对沿袭应用的准同步数字系列PDH (Plesiochronous Digital Hierarchy)的一次革命。同步传输技术体制一诞生就获得了广泛的支持,年销售额已超过70亿美元。SONET多用于北美和日本,SDH多用于中国和欧洲,我国也已成为世界SDH大国。原来一直沿用北美SONET体制的我国周边国家和地区,象日本、韩国、台湾也先后决定从SONET体制转向SDH体制。SDH/SONET是电信网的主导传送体制。然而,由于WDM的出现和发展,SDH的作用和角色有了很大转变。在长途干线网上,SDH的作用已经降低为WDM层的客户层,其角色正开始向网络边缘转移。鉴于网络边缘复杂的客户层信号特点,SDH必须从纯传送网转变为传送网和业务网一体化的多业务平台,即融合的多业务节点。其出发点是充分利用大家所信任的SDH技术,特别是其保护恢复能力和确保的延时性能,加以改造以适应多业务应用,支持层2乃至层3的数据智能,构成业务层和传送层一体化的多业务传送平台(MSTP)。 近几年,随着网络中数据业务份量的持续加重,SDH/SONET多业务平台正逐渐从简单地支持数据业务的固定封装和透传的方式向更加灵活有效支持数据业务的下一代SDH系统演进和发展。最新的发展是支持集成通用组帧程序(GFP)、链路容量调节方案(LCAS)和自动交换光网络(ASON)标准。 5.2.1 GFP 是一种可以透明地将各种数据信号封装进现有网络的通用标准信号适配映射技术,简单灵活,开销低,效率高,有利于多厂家设备互联互通,能够对用户数据实施统计复用,还有QoS机制。此外,利用简化任意字节块每次的处理过程,GFP降低了对数据链路映射和去映射过程的处理要求。利用现代光通信的低误码特性,GFP还进一步降低了接收机实施复杂性、设备尺寸和成本,使GFP特别适合于高速传输链路应用,例如点到点SDH链路、OTN中的波长通路以及暗光纤应用。 5.2.2 LCAS 定义了一种可以平滑地改变传送网中虚级联信号带宽的方法,以自动适应有效业务带宽,信令传输由普通的SDH网元和网管系统完成。采用LCAS的最大优点在于有效净负荷可以自动映射到可用的VC上,这意味着带宽的调整是连续的,不仅提高了带宽指配速度,对业务无损伤,而且当系统出现故障时,可以动态调整系统带宽,无须人工介入,还可以在保证服务质量的前提下明显提高网络利用率。 5.2.3 ASON 可以动态地实施连接建立和管理,使网络具有自动选路和指配功能。若下一代的SDH多业务平台能将上述VC级联,GFP,LCAS和ASON几种标准功能集成在一起,再配合核心智能光网络的自动选路和指配功能,则不仅能大大增强自身灵活有效支持数据业务的能力,而且可以将核心智能光网络的智能扩展到网络边缘,增强网络的智能范围和效率。 第6章 通信网络向智能化、全光化发展6.1 智能化光网络多年来,智能化的光传输技术一直为业内人士所关注,希望通过构建智能化的光传输网络来解决两个方面的问题;1、传统网络难以适应网上快速增长的数据业务所具有的不可预见性,实现网络带宽的动态分配;2、传统光传输网主要依靠人工配置网络连接,耗时费力且难以适应现代网络拓展新业务的需要。自动交换光网络,也被称为智能光网络,在ITU-T的标准中,指通过引入控制层面,使网络具有自动的连接建立和修改功能,以及提供连接恢复能力的光传送网络。控制层面本身能够支持不同的技术,不同的业务需求以及不同的功能组合。ITU-T的标准把与底层无关的智能传送网络称为自动交换传送网(ASTN),而底层为光传送网(OTN)的ASTN称为自动交换光网络(ASON)。ASON的优点是智能,是“自动交换”。呼叫控制器、连接控制器、路由控制器、协议控制器、策略控制器、链路资源管理器、发现代理以及终结适配器等构件等,各种控制器件严格分工协同工作,共同完成智能化控制功能。分布在各站点的控制单元之间通过I-NNI或E-NNI协议通信,迅捷地建立连接通道,实时地为业务层网络建立承载通路。对建立的通路随时释放和拆除,或在故障情况下倒换到新的连接通路。对于网管系统来讲,两个平面都要管理,由于增设了智能的控制层面,所以网管系统五大管理功能之一的“配置管理”可以大大弱化。智能光网络的应用使光网络从仅提供传输通道变为提供光业务解决方案。从而能提供多种高质量的带宽应用与服务。包括: 1、OVPN ;2、业务SLA;3、流量工程;4、带宽出租、带宽批发、 带宽贸易、实时计费;5、分布式恢复;6、SPC(软永久连接)/SC(交换连接)/PC(永久连接)6.1.1光虚拟专用网OVPN 使运营商将光网络分成多块提供给多个客户,并且提供监控功能,提供更具灵活性和多功能的波长业务,具有共享的经济性、灵活性、可靠性、安全性和可扩展性等优异特征。运营商的客户将有能力控制自己的光网络资源。OVPN业务基于用户接口,业务基本单元是一对用户边缘设备(CE)之间的一个光连接或者时分复用(TMD)连接;一个用户接口可连接到多个远端CE接口。同一CE接口中的多个通道共享相同的特征参数,而不同CE接口中的通道特征参数不必相同。用户侧具有: 独立的地址机制,受限连接机制,按需连接机制,灵活的控制机制等特点。 6.1.2服务等级协定(SLA) 解决用户和服务提供商之间有关保证服务质量的问题,是服务提供商和用户双方之间,在服务品质、优先权和责任义务等方面达成的协议,是一种电信服务评估标准。通过实际的系统应用使用户明确自己的需求,帮助服务提供商了解用户需求及用户使用网络的情况,从而制订相应的服务质量管理发展规划,优化服务,提升核心竞争力。通用的SLA管理系统功能框架由SLA数据管理、SLA问题管理和SLA管理3个部分组成。6.1.3流量工程 将业务流映射到网络的物理拓扑上的任务被称作流量工程。流量工程可以平衡网络中不同的链路、路由器和交换机之间业务负荷,有效利用整个网络的资源。未来的网络流量工程结构最新的技术发展使Internet骨干网路由器具有高速链路接口和优良的交换转发性能,使得基于路由器的核心网用一套设备即可实现流量工程的功能。目前最有希望的技术是多协议标记交换(MPLS,Multi-Protocol Label Switch)技术。MPLS的流量工程结构包括4个基本组成部分:包转发单元、信息发布单元、路径选择单元和信令单元。6.1.4 分布式恢复 网络规模的增大和复杂程度的提高给现有的集中式故障恢复策略的实施带来了困难,而分布式恢复策略可以有效地减少网络规模与故障恢复之间的相关性,业务的恢复可独立于中心网管,在设备层完成,因而恢复速度更快,代表今后的发展方向。现有的分布式网络恢复协议除了Grover的SHN(自愈网)算法,还有Bellcore的FITNESS对算法、RREACT算法、Komine算法、双向算法和Trans算法等, 6.1.5 SPC(软永久连接)/SC(交换连接)/PC(永久连接)PC和SPC连接都是由管理平面发起的对连接的管理。PC和SPC的区别在于光网络内建立连接是利用网管命令还是实时信令,这两种方式都是由运营商发起建立的业务连接。SC连接通过UNI信令接口发起,用户的业务请求通过控制平面(包括信令代理)的UNI发送给运营商,即由用户直接发起建立业务连接。6.2 全光网络的发展在骨干网容量不断扩充,DWDM系统迅速普及应用的驱动下,光网络市场出现了巨大的变化。光网络的规模在迅速扩展, 光传送网的角色从原来的大容量带宽传送转变为提供端到端的服务连接。网络运营商需要比现有光网络技术更有效和更经济的手段来管理这样的多波长网络,如何支持大规模的网络是设计自动全光网络的主要目的,全光网络面临的挑战是如何把相对粗颗粒的WDM技术和光交换能力的优势结合起来,形成一个大吞吐量的光网络平台以有效地支持分组业务。设备供应商提供的方案涵盖了从超长距离DWDM传输方案到光交叉系统方案的解决方案, 这些方案共同的价值趋向是为运营商提供光层网络的动态管理,快速地提供光层业务并降低运营成本。运营商在逐渐改变他们的网络以更好地适应电信业务从电路交换到分组交换的转变,光层网络既完成传输功能也完成交换功能的需求更迫切。新公网的目的是建立一个透明的光层网络,在光域能够容易地实现对传送信号的管理,减少对信号的处理和解释,从而提高高带宽网络的可靠性和可恢复性。光的分插复用器(OADM)和光的交叉连接设备(OXC)研制成功,即能直接在光路上对不同波长的信号实现上下和交叉连接功能。实现全光联网的基本目的是:实现超大容量光网络(一对光纤达80320Gbs);实现网络扩展性,允许网络的节点数和业务量不断增长;实现网络可重构性,达到灵活重组网络的目的;实现网络的透明性,允许互连任何系统和制式的信号;实现快速网络恢复,恢复时间可达100ms。鉴于全光联网具有上述潜在的巨大优势,发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列全光联网项目。全光联网已经成为继SDH电联网以后的又一次新的光通信发展高潮,建设一个最大透明的、高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NIl)奠定一个坚实的物理基础,而且也对我国的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。 6.3 全光网络的组成 随着光网络需求和技术的发展,全光网络的结构从功能上将由两层组成:光核心网络和光边缘网络。光核心网络主要由以下网络单元组成:光传送系统,混合ADM/宽带数字交叉连接系统,光分插复用器(OADM)和光交叉连接器(OXC),智能光交换系统,太比特路由器。光传送系统通过光纤分离的光通道传送多种信号;混合ADM/宽带数字交叉连接系统存在于边缘网络和核心网络的边界,是宽带数字交叉连接和SDH的集成,但增加了TDM和包交换/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业用地土地使用权转让合同
- 我的一周生活记录:周记作文(13篇)
- 《国际音标基础知识:初中英语发音教学教案》
- 创新培养模式下地理学学科的互馈机制构建
- 英语医学术语应用能力考试内容
- 个人学习进展记录表
- 高性能机器人电驱动关节生产线项目可行性研究报告(范文模板)
- 2025年应用统计学专业资格考试试题及答案
- 2025年网络数据分析与优化策略考试题及答案
- 2025年农村经济与社会发展能力测评试题及答案
- 2025年北京市高考英语试卷真题(含答案解析)
- 中国可穿戴医疗设备项目创业计划书
- 2025年高考物理广西卷试题真题及答案详解(精校打印)
- CJ/T 345-2010生活饮用水净水厂用煤质活性炭
- 国开电大【管理英语3单元自测1-8答案】+【管理英语4形考任务单元自测1-8答案】
- GB/T 45630-2025系统与软件工程架构描述
- 施工现场消防安全应急预案
- 2025年全国司法警察学院考试试卷及答案
- 2024年湖北省中考地理生物试卷(含答案)
- 2024年甘肃省天水市中考生物·地理试题卷(含答案)
- GA 1016-2012枪支(弹药)库室风险等级划分与安全防范要求
评论
0/150
提交评论