




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016轴对称单元基础练习卷一选择题(共10小题)1在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()ABCD2如图,等腰ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则BEC的周长为()A13B14C15D163已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为()A50B80C50或80D40或654如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC与ACE的平分线相交于点D,则D的度数为()A15B17.5C20D22.55如图,正ABC的边长为2,过点B的直线lAB,且ABC与ABC关于直线l对称,D为线段BC上一动点,则AD+CD的最小值是()A4B3C2D2+6如图,在ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,ABC的周长为23,则ABD的周长为()A13B15C17D197如图所示,线段AC的垂直平分线交线段AB于点D,A=50,则BDC=()A50B100C120D1308等腰三角形的两边长分别为4cm和8cm,则它的周长为()A16cmB17cmC20cmD16cm或20cm9如图所示,底边BC为2,顶角A为120的等腰ABC中,DE垂直平分AB于D,则ACE的周长为()A2+2B2+C4D310如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,若A=70,则An1AnBn1的度数为()ABCD二填空题(共8小题)11一个汽车牌在水中的倒影为,则该车牌照号码12平面直角坐标系中的点P关于x轴的对称点在第四象限,则m的取值范围为13如图,在ABC中,AC=BC,ACB=90,点D在BC上,BD=1,DC=2,点P是AB上的动点,则PC+PD的最小值为14已知射线OM以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则AOB=(度)15如图,ABC是等边三角形P是ABC的平分线BD上一点,PEAB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q若BF=2,则PE的长为16已知:如图,ABC中,BO,CO分别是ABC和ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DEBC若AB=6cm,AC=8cm,则ADE的周长为17如图,在等边ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是18两组邻边分别相等的四边形我们称它为筝形如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有(填序号)ACBD;AC、BD互相平分;AC平分BCD;ABC=ADC=90;筝形ABCD的面积为三解答题(共8小题)19如图,在ABC中,ACB=90,BE平分ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC20上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处测得NAC=32,ABC=116求从B处到灯塔C的距离?21证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,已知:如图,在ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F求证:AB、BC、AC的垂直平分线相交于点P证明:点P是AB边垂直平线上的一点,=()同理可得,PB=(等量代换)(到一条线段两个端点距离相等的点,在这条线段的)AB、BC、AC的垂直平分线22在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上)(1)写出ABC的面积;(2)画出ABC关于y轴对称的A1B1C1;(3)写出点A及其对称点A1的坐标23如图,已知ABC中,A=90,AB=AC,BD=BC,AC,BD相交于点E,DCE=DBC(1)求CBD的度数;(2)求证:CD=CE;(3)判断EAB的面积SEAB与EDC的面积SEDC的大小关系24如图,已知:ABCD,BAE=DCF,AC,EF相交于点M,有AM=CM(1)求证:AECF;(2)若AM平分FAE,求证:FE垂直平分AC25如图,在ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若A=40(1)求NMB的度数;(2)如果将(1)中A的度数改为70,其余条件不变,再求NMB的度数;(3)你发现A与NMB有什么关系,试证明之26在ABC中,AB=AC,点D在BC边所在的直线上,过点D作DEAC交直线AB于E,DFAB交直线AC于点F,当点D在边BC上时,如图,此时DE、DF、AC满足DE+DF=AC(1)当点D在BC的延长线或方向延长线上时,如图、如图,此时,DE、DF、AC分别存在怎样的数量关系?请写出来,并选择一个加以证明(2)若AC=6,DE=4,则DF=2016轴对称单元基础练习卷参考答案与试题解析一选择题(共10小题)1(2016舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()ABCD【分析】根据轴对称图形的概念进行判断即可【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误故选:B2(2016黄冈三模)如图,等腰ABC中,AB=AC=8,BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则BEC的周长为()A13B14C15D16【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,然后求出BEC周长=AC+BC,再根据等腰三角形两腰相等可得AC=AB,代入数据计算即可得解【解答】解:DE是AB的垂直平分线,AE=BE,BEC周长=BE+CE+BC=AE+CE+BC=AC+BC,腰长AB=8,AC=AB=8,BEC周长=8+5=13故选A3(2016杭州二模)已知等腰三角形的一个内角为50,则这个等腰三角形的顶角为()A50B80C50或80D40或65【分析】先知有两种情况(顶角是50和底角是50时),由等边对等角求出底角的度数,用三角形的内角和定理即可求出顶角的度数【解答】解:如图所示,ABC中,AB=AC有两种情况:顶角A=50;当底角是50时,AB=AC,B=C=50,A+B+C=180,A=1805050=80,这个等腰三角形的顶角为50和80故选:C4(2016枣庄)如图,在ABC中,AB=AC,A=30,E为BC延长线上一点,ABC与ACE的平分线相交于点D,则D的度数为()A15B17.5C20D22.5【分析】先根据角平分线的定义得到1=2,3=4,再根据三角形外角性质得1+2=3+4+A,1=3+D,则21=23+A,利用等式的性质得到D=A,然后把A的度数代入计算即可【解答】解:ABC的平分线与ACE的平分线交于点D,1=2,3=4,ACE=A+ABC,即1+2=3+4+A,21=23+A,1=3+D,D=A=30=15故选A5(2016百色)如图,正ABC的边长为2,过点B的直线lAB,且ABC与ABC关于直线l对称,D为线段BC上一动点,则AD+CD的最小值是()A4B3C2D2+【分析】作点A关于直线BC的对称点A1,连接A1C交直线BC与点D,由图象可知点D在CB的延长线上,由此可得出当点D与点B重合时,AD+CD的值最小,由此即可得出结论,再根据等边三角形的性质算出AB+CB的长度即可【解答】解:作点A关于直线BC的对称点A1,连接A1C交直线BC与点D,如图所示由图象可知当点D在CB的延长线上时,AD+CD最小,而点D为线段BC上一动点,当点D与点B重合时AD+CD值最小,此时AD+CD=AB+CB=2+2=4故选A6(2016天门)如图,在ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,ABC的周长为23,则ABD的周长为()A13B15C17D19【分析】根据线段垂直平分线性质得出AD=DC,AE=CE=4,求出AC=8,AB+BC=15,求出ABD的周长为AB+BC,代入求出即可【解答】解:AC的垂直平分线分别交AC、BC于E,D两点,AD=DC,AE=CE=4,即AC=8,ABC的周长为23,AB+BC+AC=23,AB+BC=238=15,ABD的周长为AB+BD+AD=AB+BD+CD=AB+BC=15,故选B7(2016黄石)如图所示,线段AC的垂直平分线交线段AB于点D,A=50,则BDC=()A50B100C120D130【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到DCA=A,根据三角形的外角的性质计算即可【解答】解:DE是线段AC的垂直平分线,DA=DC,DCA=A=50,BDC=DCA+A=100,故选:B8(2016怀化)等腰三角形的两边长分别为4cm和8cm,则它的周长为()A16cmB17cmC20cmD16cm或20cm【分析】根据等腰三角形的性质,本题要分情况讨论当腰长为4cm或是腰长为8cm两种情况【解答】解:等腰三角形的两边长分别为4cm和8cm,当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm故选C9(2016雅安)如图所示,底边BC为2,顶角A为120的等腰ABC中,DE垂直平分AB于D,则ACE的周长为()A2+2B2+C4D3【分析】过A作AFBC于F,根据等腰三角形的性质得到B=C=30,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论【解答】解:过A作AFBC于F,AB=AC,A=120,B=C=30,AB=AC=2,DE垂直平分AB,BE=AE,AE+CE=BC=2,ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A10(2016六盘水)如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4,若A=70,则An1AnBn1的度数为()ABCD【分析】根据三角形外角的性质及等腰三角形的性质分别求出B1A2A1,B2A3A2及B3A4A3的度数,找出规律即可得出An1AnBn1的度数【解答】解:在ABA1中,A=70,AB=A1B,BA1A=70,A1A2=A1B1,BA1A是A1A2B1的外角,B1A2A1=35;同理可得,B2A3A2=17.5,B3A4A3=17.5=,An1AnBn1=故选:C二填空题(共8小题)11(2016薛城区一模)一个汽车牌在水中的倒影为,则该车牌照号码M17936【分析】易得所求的牌照与看到的牌照关于水平的一条直线成轴对称,作出相应图形即可求解【解答】解: M 1 7 9 3 6该车的牌照号码是M17936故答案为:M1793612(2016富顺县校级模拟)平面直角坐标系中的点P关于x轴的对称点在第四象限,则m的取值范围为0m2【分析】先根据x轴对称的点的坐标特点得到点P(2m,m)关于x轴对称的点的坐标为P1(2m,m),然后根据第四象限点的坐标特点得到,再解不等式组即可【解答】解:点P(2m,m)关于x轴对称的点的坐标为P1(2m,m),P1(2m,m)在第四象限,解得0m2,m的取值范围为 0m2故答案为0m213(2016丹东一模)如图,在ABC中,AC=BC,ACB=90,点D在BC上,BD=1,DC=2,点P是AB上的动点,则PC+PD的最小值为【分析】首先确定DC=DP+PC=DP+CP的值最小,然后根据勾股定理计算【解答】解:过点C作COAB于O,延长CO到C,使OC=OC,连接DC,交AB于P,连接CP,此时DP+CP=DP+PC=DC的值最小BD=1,DC=2,BC=3,连接BC,由对称性可知CBE=CBE=45,CBC=90,BCBC,BCC=BCC=45,BC=BC=3,根据勾股定理可得DC=故答案为:14(2016丰台区二模)已知射线OM以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则AOB=60(度)【分析】首先连接AB,由题意易证得AOB是等边三角形,根据等边三角形的性质,可求得AOB的度数【解答】解:连接AB,根据题意得:OB=OA=AB,AOB是等边三角形,AOB=60故答案为:6015(2016泰安模拟)如图,ABC是等边三角形P是ABC的平分线BD上一点,PEAB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q若BF=2,则PE的长为【分析】在直角BFQ中,利用三角函数即可求得BQ的长,则BP的长即可求得,然后在直角BPE中,利用30度所对的直角边等于斜边的一半即可求得PE的长【解答】解:ABC是等边三角形P是ABC的平分线BD上一点,FBQ=EBP=30,在直角BFQ中,BQ=BFcosFBQ=2=,又QF是BP的垂直平分线,BP=2BQ=2直角BPE中,EBP=30,PE=BP=故答案是:16(2016淮安一模)已知:如图,ABC中,BO,CO分别是ABC和ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DEBC若AB=6cm,AC=8cm,则ADE的周长为14cm【分析】两直线平行,内错角相等,以及根据角平分线性质,可得OBD、EOC均为等腰三角形,由此把AEF的周长转化为AC+AB【解答】解:DEBCDOB=OBC,又BO是ABC的角平分线,DBO=OBC,DBO=DOB,BD=OD,同理:OE=EC,ADE的周长=AD+OD+OE+EC=AD+BD+AE+EC=AB+AC=14cm故答案是:14cm17(2016三明)如图,在等边ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是6MN4【分析】当点P为BC的中点时,MN最短,求出此时MN的长度,当点P与点B(或C)重合时,BN(或CM)最长,求出此时BN(或CM)的长度,由此即可得出MN的取值范围【解答】解:如图1,当点P为BC的中点时,MN最短此时E、F分别为AB、AC的中点,PE=AC,PF=AB,EF=BC,MN=ME+EF+FN=PE+EF+PF=6;如图2,当点P和点B(或点C)重合时,此时BN(或CM)最长此时G(H)为AB(AC)的中点,CG=2(BH=2),CM=4(BN=4)故线段MN长的取值范围是6MN4故答案为:6MN418(2016南京一模)两组邻边分别相等的四边形我们称它为筝形如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有(填序号)ACBD;AC、BD互相平分;AC平分BCD;ABC=ADC=90;筝形ABCD的面积为【分析】根据题意AB=AD,BC=DC,AC与BD相交于点O可以证明ABCADC、ABOADO,可得AC、BD互相垂直,AC平分BAD、BCD【解答】解:在ABC与ADC中,ABCADC(SSS)BAO=DAO,BCO=DCO,即AC平分BCD故正确;AC平分BAD、BCD,ABD与BCD均为等腰三角形,AC、BD互相垂直,但不平分故正确,错误;当AC2AB2+BC2时,ABC90同理ADC90故错误;AC、BD互相垂直,筝形ABCD的面积为:ACBO+ACOD=ACBD故正确;综上所述,正确的说法是故答案是:三解答题(共8小题)19(2016历下区一模)如图,在ABC中,ACB=90,BE平分ABC,交AC于E,DE垂直平分AB于D,求证:BE+DE=AC【分析】根据角平分线性质得出CE=DE,根据线段垂直平分线性质得出AE=BE,代入AC=AE+CE求出即可【解答】证明:ACB=90,ACBC,EDAB,BE平分ABC,CE=DE,DE垂直平分AB,AE=BE,AC=AE+CE,BE+DE=AC20(2016春罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处测得NAC=32,ABC=116求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得C=32,所以ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离【解答】解:根据题意,得AB=304=120(海里);在ABC中,NAC=32,ABC=116,C=180NACABC=32,C=NAC,BC=AB=120(海里),即从B处到灯塔C的距离是120海里21(2016春北京校级月考)证明定理:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,已知:如图,在ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F求证:AB、BC、AC的垂直平分线相交于点P证明:点P是AB边垂直平线上的一点,PB=PA(垂直平分线上任意一点,到线段两端点的距离相等)同理可得,PB=垂直平分线上任意一点,到线段两端点的距离相等PA=PC(等量代换)点P是AC边垂直平线上的一点(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)AB、BC、AC的垂直平分线相交于点P【分析】根据线段垂直平分线的性质可得出PB=PA,同理可得出PA=PC,由此即可得出PA=PC,再根据线段垂直平分线的性质可得出点P是AC边垂直平线上的一点,从而证出结论【解答】证明:点P是AB边垂直平线上的一点,PB=PA (垂直平分线上任意一点,到线段两端点的距离相等)同理可得,PB=PC(垂直平分线上任意一点,到线段两端点的距离相等)PA=PC(等量代换)点P是AC边垂直平线上的一点(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上),AB、BC、AC的垂直平分线相交于点P故答案为:PB;PA;垂直平分线上任意一点,到线段两端点的距离相等;PC;垂直平分线上任意一点,到线段两端点的距离相等;PA;PC;点P是AC边垂直平线上的一点;垂直平分线上;相交于点P22(2015秋夏津县期末)在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上)(1)写出ABC的面积;(2)画出ABC关于y轴对称的A1B1C1;(3)写出点A及其对称点A1的坐标【分析】(1)ABC中,ACy轴,以AC为底边求三角形的面积;(2)对称轴为y轴,根据轴对称性画图;(3)根据所画图形,写出点A及其对称点A1的坐标【解答】解:(1)ABC的面积=72=7;(1分)(2)画图如图所示;(3分)(3)由图形可知,点A坐标为:(1,3),(4分)点A1的坐标为:(1,3)(5分)23(2015秋川汇区校级期中)如图,已知ABC中,A=90,AB=AC,BD=BC,AC,BD相交于点E,DCE=DBC(1)求CBD的度数;(2)求证:CD=CE;(3)判断EAB的面积SEAB与EDC的面积SEDC的大小关系【分析】(1)证明D=DCB=45+,运用三角形的内角和定理即可解决问题(2)证明DEC=D,即可解决问题(3)如图,作辅助线,证明AM=DN,即可解决问题【解答】解:(1)A=90,AB=AC,ABC=ACB=45;BD=BC,且DCE=DBC(设为),D=DCB=45+;由三角形的内角和定理得:+2(45+)=180,=30,即CBD=30(2)DEC=45+30=75,D=45+30=75,DEC=D,CD=CE(3)如图,分别过点A、D作AMBC、DNBC;设BD=BC=;AB=AC,AMBC,BM=CM,AM=BC=;DBC=30,DN=BD=,AM=DN,ABC与DBC的面积相等,SEAB=SEDC24(2016春金堂县期末)如图,已知:ABCD,BAE=DCF,AC,EF相交于点M,有AM=CM(1)求证:AECF;(2)若AM平分FAE,求证:FE垂直平分AC【分析】(1)先根据ABCD得出BAC=DCA,再由BAE=DCF可知EAM=FCM,故可得出结论;(2)先由AM平分FAE得出FAM=EAM,再根据EAM=FAM可知FAM=FCM,故FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论【解答】(1)证明:ABCD,BAC=DCA,又BAE=DCF,EAM=FCM,AECF;(2)证明:AM平分FAE,FAM=EAM,又EAM=FCM,FAM=FCM,FAC是等腰三角形,又AM=CM,FMAC,即EF垂直平分AC25(2016春埇桥区期末)如图,在ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若A=40(1)求NMB的度数;(2)如果将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 世界海龟日活动方案
- 世界避孕日活动方案
- 业主交付活动方案
- 丛林穿越活动方案
- 天猫六一八促销活动方案
- 大学清吧活动策划方案
- 基金公司搞活动方案
- 墙布销售活动方案
- 天然气公司趣味活动方案
- 垃圾分拣亲子活动方案
- 国开期末考试《管理英语4》机考试题及答案第4套
- 2023超星尔雅《艺术鉴赏》期末考试答案
- 产后出血的护理-课件
- 中医适宜技术操作规程及评分标准
- 生物传感器课件
- 护理三基知识试题与答案
- 陕西省机关事业单位工人技术等级考核农艺工题库
- 湖北省襄阳市樊城区2022-2023学年数学六下期末检测试题含解析
- 周围性面瘫-医学课件
- 2023年春季国开《学前教育科研方法》期末大作业(参考答案)
- 2023四川安全员《B证》考试题库
评论
0/150
提交评论