



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章 多元线性回归模型第一部分 学习指导一、本章学习目的与要求1、掌握一元线性回归的经典假设;2、掌握一元线性回归的最小二乘法参数估计的计算公式、性质和应用;3、理解拟合优度指标:决定系数R2的含义和作用;4、掌握解释变量和被解释变量之间线性关系检验,回归参数和的显著性检验5、了解利用回归方程进行预测的方法。二、本章内容提要 (一)二元线性回归模型的参数估计二元线性回归模型形式为:如果记:,根据OLS估计可得:而,这样就把三个系数估计出来了,关于分布参数的无偏估计量为:(二)二元线性回归模型参数估计量的性质1、二元线性回归方程线性性检验总离差平方和:,该指标反映了被解释变量总体上变动程度;回归平方和:,该指标反映了变量对被解释变量变动的解释程度;残差平方和:,它反映了自变量对被解释变量变动尚未解释的程度。这三个平方和具有下列的等式关系:。方程显著性检验正是建立在这三个平方和的基础上,其检验步骤如下:(1)原假设和备择假设的建立:(2)构造F统计量:不加证明地指出,其中:用它的无偏估计量(3)根据估计的结果,计算出统计量值。(4)根据给定显著性水平和自由度,查F分布的临界表得到临界值。(5)比较统计量值和临界值,做出判断,规则如下:若,则拒绝原假设,接受备择假设,从而回归模型总体显著;若,则接受原假设,拒绝备择假设,即回归模型变量之间线性关系不显著。2、系数的显著性检验主要步骤(1)建立假设检验:(2)构造检验的统计量:不加证明地指出,在原假设成立的条件下有:t(n3)其中:(3)计算统计量的值。(4)给定显著性水平,查t分布的临界表得到临界值。(5)比较计算的统计量值和查表得到的临界值,做出检验判断,规则如下:如果,则拒绝原假设,接受备择假设,即系数在给定显著性水平下与0有显著性差异;如果,则接受原假设,拒绝备择假设,即系数在给定显著性水平下与0无显著差异。(三)多元线性回归模型的经典假设多元线性回归模型的一般表达式为:则元线性回归模型的矩阵表示为: 对多元线性回归模型的经典假设内容主要有:(1):即随机误差项对被解释变量的影响平均结果为零,此为零均值假设。(2):即所有随机误差项的方差相等,此为同方差假设。(3):即不同随机误差项之间是不相关的,此为不相关假设。(4)所有的解释变量是确定性的,因而是非随机的,它和随机误差项不相关。(5)数量矩阵的秩满足不等式,也就是解释变量之间不存在多重共线性。(6)为了满足假设检验和预测的需要,一般还要进一步假设,即所有的随机误差项服从正态分布,此为正态分布假设。(四)多元回归模型的参数估计假设已经得到回归系数的一个估计,记为,则被解释变量和随机误差项的估计值分别为:残差平方和可以表示为:由OLS估计得到:参数的一个无偏估计为: (五)多元线性回归模型的假设检验1、多元线性回归方程线性性检验多元线性回归模型的线性性检验也是建立在三个离差平方和的基础上,即:总离差平方和,回归平方和,残差平方和。与一元线性回归一样,定义,它衡量各个解释变量对被解释变量变动的解释程度,显然其取值是在0与1之间,值越接近1,则解释变量的解释程度越高,值越接近0,则解释变量的解释能力越弱。一般来说,增加解释变量的个数,会增加回归平方和,所以就会变大,这样容易引起误导,把不显著的解释变量也留在回归方程中,有鉴于此,需要对该指标加以调整,这就是调整的决定系数,定义为,该指标考虑到加入解释变量对自由度的影响,因而是合理的。 方程线性性显著性检验步骤如下:(1)建立原假设和备择假设(2)构造统计量:在原假设成立下,不加证明地指出下列结论是成立的:(3)根据估计的结果,计算出统计量值。(4)根据给定显著性水平和自由度,查分布的临界表得到临界值。(5)比较统计量值和临界值,做出判断,规则如下:若,则拒绝原假设,接受备择假设,从而回归模型变量之间线性关系显著;若,则接受原假设,拒绝备则假设,从而回归模型变量之间线性关系不显著。2、参数显著性的t检验单参数假设检验的基本步骤如下:(1)建立假设检验:(2)构造检验的统计量:在原假设成立的条件下有(3)计算统计量的值。(4)给定显著性水平,查t分布的临界表,得到临界值。(5)比较计算的统计量值和查表得到的临界值,给出判断,规则如下:如果,则拒绝原假设,接受备择假设,即系数在给定显著性水平下与0有显著性差异;如果,则接受原假设,拒绝备择假设,即系数在给定显著性水平下与0没有显著性差异。第二部分 重点、难点解析一、回归系数的解释在二元回归模型中,某个回归系数的解释是,在其他解释变量不变的情况下,该解释变量本身的变动对被解释变量影响的大小,而在一元回归中,并没有提到这个前提(指在其他解释变量不变的情况下),那么如何理解这个前提呢?根据前面的分析知道,由于解释变量之间在不同程度上存在着线性相关,所以对于二元线性回归模型而言,两个解释变量对被解释变量的解释关系可以用图4.1来表示。图 4.1图中的虚线表示一个解释变量通过另一个解释变量对被解释变量的间接解释作用,而实线表示解释变量直接对被解释变量的解释作用,这就是回归系数所表示的,所以要使用一元线性回归求回归系数,就必需扣除虚线的影响,比如要求对的影响,就必须扣除通过对施加的间接影响,下面以为例加以说明,这可以通过以下三步来完成。 1扣除对被解释变量的解释作用,作如下一元线性回归从总体中随机抽取容量为的样本,其观测值为,根据一元线性回归模型得到:即为被解释变量尚未被解释而由和随机误差项来解释的部分。2扣除对解释变量的解释作用作如下一元线性回归模型:从总体中随机抽取容量为的样本,其观测值为,根据一元线性回归模型得到:即为解释变量对被解释变量的解释作用部分。3估计解释变量对被解释变量的解释作如下一元线性回归模型:根据一元线性回归模型得到:于是有。二、多元线性回归模型的一般检验前面所讨论的是多元线性回归模型的两种特殊检验,即一个是单参数的显著性检验,另一个是回归方程线性性检验,实际上,有时还需要检验诸如下列关系式是否成立:这就是更一般关系的假设检验
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非水介质染色技术的环境影响评估
- 医疗器械单位岗位职责培训
- 让生命充满教育的光辉
- 2025年网络直播行业规范化路径与多元化商业模式深度解析报告
- 制作日历活动课件
- 河南省商丘市柘城县2024-2025学年八年级下学期6月期末考试道德与法治试卷(含答案)
- 中医护理基础与实践
- 业务经理培训课件
- Excel基本操作培训
- 外科术后恶心呕吐的护理
- GB/T 33011-2016建筑用绝热制品抗冻融性能的测定
- 《干部履历表》(1999版电子版)
- 幼儿教育学试题及答案
- 巨量引擎O-5A人群资产经营方法论
- 医院管理分享全病程服务管理模式的构建与实践湘雅医院案例
- 室内装修腻子、双飞粉施工方案
- 基于同态加密的高效密文检索技术LEAF
- 防暴队形训练
- 某集团考勤管理制实施细则
- 小升初苏教版六年级科学下册复习资料好
- 未注公差的直径尺寸公差IT
评论
0/150
提交评论