已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 一元一次不等式和一元一次不等式组不等关系、不等式的基本性质及解集知识要点要点1 不等式的概念及分类一般地,用符号“”(或“”),“”(或“”),连接的式子叫做不等式。不等式分类:(1) 绝对不等式。无论在什么条件下不等式都成立。(2) 条件不等式。只有在一定条件下不等式才能成立。(3) 矛盾不等式。无论在什么条件下不等式都不成立。要点2 常见不等式的基本语言(1) 若x_0,则x是正数。(2) 若x_0,则x是负数。 (3) 若x_0, 则x是非负数。(4) 若x_0,则x是非正数。 (5) 若xy_0,则x大于y。(6) 若xy_0,则x小于y。(7) 若xy_0,则x不小于y。 (8) 若xy_0,则x不大于y。(9) 若xy_0(或),则x,y同号。(10) 若xy_0(或),则x,y异号。要点3 不等式的基本性质及其他性质基本性质(1) 不等式的两边都加上(或减去)同一个整式,不等号方向不变。(2) 不等式的两边都乘以(或除以)同一个正数,不等号方向不变。(3) 不等式的两边都乘以(或除以)同一个负数,不等号方向要改变。其他性质(1) 若ab,则ba; (2) 若ab,且bc,则ac;(3)若ab,且ba,则ab; (4) 若a20,则a0。说明:不等式的基本性质也是不等式的同解原理。要点4 不等式的解和不等式的解集以及它们的区别与联系能使不等式成立的未知数的值,叫做不等式的解。(能使不等式成立的未知数的某个值)一个含有未知数的不等式的所有的解,组成这个不等式的解集。(能使不等式成立的未知数的所有值)要点5 在数轴上表示不等式的解集(用以下口诀便于记忆)大于向右画,小于向左画,有等号的画实心,无等号的画空心。一元一次不等式、一元一次不等式与一次函数、一元一次不等式组知识要点要点1 一元一次不等式及解一元一次不等式的一般步骤概念:不等式两边都是整式,只含有一个未知数,并且未知数的最高次数是1,像这样的不等式为一元一次不等式。解一元一次不等式的一般步骤(1) 去分母(根据不等式的性质2或3);(2) 取括号(根据整式的运算法则);(3) 移项(根据不等式的性质1); (4) 合并同类项(根据整式的运算法则);(5) 将未知数的系数化为1(根据不等式的性质2或3)。要点2 一元一次不等式在实际问题中的应用(1) 把实际问题转化为不等式问题,就是根据不等式关系列出不等式;(2) 要根据题中字母或者有关量的限制条件找出符合实际定一的解。(符合实际意义、具体的、有限的特殊解)要点3 用一次函数的图象确定一元一次不等式解集的方法(1) 对于单个的一次函数ykxb(k0),求函数值为正(或负)时对应自变量的取值时,就变成了一元一次不等式kxb0(或kxb0);(2) 对于两个一次函数y1k1xb1(k10)和y2k2xb2(k20),若求x为何值时,y1y2(或y1y2),就成为不等式k1xb1k2xb2(或k1xb1k2xb2)要点4 一元一次方程、一元一次不等式与一次函数的关系不等式与函数和方程是紧密联系的一个整体,有如下关系:要点5 一元一次不等式组的概念及解集(1)概念:一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组。(2)解集:一元一次不等式组中各个不等式的解集的公共部分,叫做一元一次不等式组的解集。口诀:同大取大,同小取小,大小小大中间找,大大小小无处找。例题精讲:例1、已知610,则的取值范围是 。分析:在的两边都加上,可得,再由610可得930,即930例2、若关于的不等式组的解集为,则的取值范围是 。分析:由得 ,解之得。由得 。因为原不等式组的解集为,所以,所以。例3、要使a5a3aa2a4成立,则a的取值范围是( )A.0a1 B. a1 C.1a0 D. a1分析:由a3a到a2a4,是在a3a的两边都乘以a,且a0来实现的;在a3a两边都除以a,得a21,显然有a1。故选D例4、若不等式的解集是,则不等式 。分析:原不等式可化为。因为,所以由得 ,代入得 0,所以。由 得。把代入得 。例5、在满足,的条件下, 能达到的最大值是 。分析:将转化为只含有一个字母的代数式,再根据条件求解。,。 ,。即故 能达到的最大值是6。例6、某校师生积极为汶川地震灾区捐款,在得知灾区急需帐篷后,立即到当地的一家帐篷厂采购,帐篷有两种规格:可供3人居住的小帐篷,价格每顶160元;可供10人居住的大帐篷,价格每顶400元。学校花去捐款96000元,正好可供2300人临时居住。(1)求该校采购了多少顶3人小帐篷,多少顶10人大帐篷;(2)学校现计划租用甲、乙两种型号的卡车共20辆将这批帐篷紧急运往灾区,已知甲型卡车每辆可同时装运4顶小帐篷和11顶大帐篷,乙型卡车每辆可同时装运12顶小帐篷和7顶大帐篷。如何安排甲、乙两种卡车可一次性将这批帐篷运往灾区?有哪几种方案?强化训练:一、填空题yxOAB1、关于x的不等式组的解集是,则m = 2、已知(1)若,则的取值范围是_(2)若,且,则_3、如图,直线经过,两点,则不等式的解集为 4、如果不等式组的解集是,那么的值为 5、已知关于的不等式组只有四个整数解,则实数的取值范围是 6、已知关于x的不等式(3a2)x23的解集是x,则a_7、若a0,则不等式的解集是_8、点p(x-2,3+x)在第二象限,则x的取值范围是_9、不等式3(x+2)4+2x的负整数解为_;当x_时,代数式的值为非负数10、当a 时,不等式(a1)x1的解集是x。11、已知x3是方程2x1的解,那么不等式(2)x的解集是 12、如果关于x的不等式组的解集是,那么m的取值范围是 x013、八年级某班级部分同学去植树,若每人平均植树7课,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数不到8棵。则一共去了学生,一共要植 棵树。14、关于x的不等式组 只有4个整数解,则a的取值范围是 15、观察右图,可以得出不等式组的解集是16、函数y=kx+b的图象如右图, 则方程kx+b=0的解为_, 不等式kx+b0的解集为_, 不等式kx+b-30的解集为_.17、直线经过点和点,直线过点A,则不等式的解集为 第15题 第16题 第17题二、选择题1、如果一元一次不等式组的解集为则的取值范围是()A B C D2、若不等式组有解,则a的取值范围是( )A B C D3、不等式的负整数解的个数有( ) A. 0个B. 2个C. 4个D. 6个4、下列四个不等式:(1)acbc;(2);(3);(4)中,能推出ab的有( ) A. 1个B. 2个C. 3个D. 4个5、若不等式组的解集是,则t的取值范围是( ) A. t1C. D. 6、若不等式组的解集为x2,则a的取得范围是( ) A. a2 B. a2 C. a2 D. a 2三、解不等式或不等式组:1、 -1 2、 3、四、解答题1、(1)当m取何值时,关于x的方程3xm2(m2)3mx的解在5和5之间?(2)若方程组 的解x、y都是正数,求a的取值范围。湘 莲 品 种ABC每辆汽车运载量(吨)12108每吨湘莲获利(万元)3422、我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:(1)设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.3、某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件。(1) 求A、B两种纪念品的进价分别为多少?(2) 若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?4、如图,表示神风摩托车厂一天的销售收入与摩托车销售量的关系;表示摩托车厂一天的销售成本与销售量的关系。(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 19919-2025小艇窗、舷窗、舱口盖、风暴盖和门强度和密封性要求
- 出租承包鱼塘合同范本
- 农村集体住宅合同范本
- 农村菜地维修合同范本
- 协议书艺术家画展合同
- 创维光伏融资合同范本
- 冠状疫苗采购合同范本
- 合同履行期满补充协议
- 劳动合同顺延协议范本
- 合同范本草场租赁合同
- 【MOOC】工程图学-中国矿业大学 中国大学慕课MOOC答案
- 政府采购评审专家考试题库(完整版)
- 一次性赔偿协议样本
- 合伙果园合同范本
- 12J201平屋面建筑构造图集(完整版)
- 个体工商营业执照变更委托书
- 2023年文山州富宁县紧密型县域医疗卫生共同体总医院招聘考试真题
- 课内文言文知识点梳理(原文+注释+翻译) 统编版语文九年级下册
- 十年(2015-2024)高考真题数学分项汇编(全国)专题15 函数及其基本性质(单调性、奇偶性、周期性、对称性)小题综合(学生卷)
- 2024年个人信用报告(个人简版)样本(带水印-可编辑)
- 开展学校德育工作专题研究记录
评论
0/150
提交评论