




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 4 2正 余弦函数的图像和性质 1 1 正弦 余弦函数的图象和性质 y sinx x R y cosx x R 定义域 值域 周期性 x R y 1 1 T 2 2 2 周期函数的定义 一般地 对于函数f x 如果存在一个非零常数T 使得当x取定义域内的每一个值时 都有f x T f x 那么函数f x 就叫做周期函数 非零常数T叫做这个函数的周期 对于一个周期函数f x 如果在它所有的周期中存在一个最小的正数 那么这个最小正数就叫做f x 的最小正周期 3 可知 函数y sinx和y cosx都是周期函数 2k k Z且k 0 都是它的周期 最小正周期是2 由sin x 2k sinx cos x 2k cosx k Z 4 注意 1 周期T为非零常数 2 等式f x T f x 对于定义域M内任意一个x都成立 3 周期函数f x 的定义域必为无界数集 至少一端是无界的 4 周期函数不一定有最小正周期 举例 f x 1 x R 任一非零实数都是函数f x 1的周期 但在正实数中无最小值 故不存在最小正周期 5 的最小正周期 6 例1求下列函数的周期 1 y 3cosx x R 2 y sin2x x R 3 例题讲解 7 8 9 10 11 例1 已知定义在R上的函数f x 满足f x 2 f x 0 试判断f x 是否为周期函数 4 周期函数应用 结论 定义在R上的函数f x 满足f x a f x 0或f x a f x 则f x 是周期为2a的周期函数 12 例2 已知定义在R上的函数f x 满足f x 1 f x 1 且当x 0 2 时 f x x 4 求f 10 的值 结论 定义在R上的函数f x 满足f x a f x b 0或f x a f x b 则f x 是周期为a b的周期函数 13 14 15 奇偶性 一般的 如果对于一个定义域关于原点对称的函数f x 的定义域内的任意一个x 都有f x f x 则称f x 为这一定义域内的奇函数 奇函数的图像关于原点对称 一般的 如果对于一个定义域关于原点对称的函数f x 的定义域内的任意一个x 都有f x f x 则称f x 为这一定义域内的偶函数 偶函数的图像关于y轴对称 16 1 正弦 余弦函数的奇偶性 单调性 sin x sinx x R y sinx x R 是奇函数 cos x cosx x R y cosx x R 是偶函数 定义域关于原点对称 正弦 余弦函数的奇偶性 17 正弦函数的单调性 y sinx x R 1 0 1 0 1 18 余弦函数的单调性 y cosx x R 1 0 1 0 1 19 单调性 y cosx在每一个闭区间 2k 1 2k k Z 上都是增函数 其值从 1增大到1 在每一个闭区间 2k 2k 1 k Z 上都是减函数 其值从1减小到 1 y sinx在每一个闭区间 2k 2k k Z 上都是增函数 其值从 1增大到1 在每一个闭区间 2k 2k k Z 上都是减函数 其值从1减小到 1 20 21 例4比较下列各组数的大小 例5求函数 x 2 2 的单调递增区间 22 23 当cosx 1即x 2k k Z 时 y取到最大值3 解 由cosx 0得 2k x 2k k Z 函数定义域为 2k 2k 由0 cosx 1 1 2 1 3 函数值域为 1 3 练 求函数y 2 1的定义域 值域 并求当x为何值时 y取到最大值 最大值为多少 24 正弦 余弦函数的奇偶性 单调性 奇函数 偶函数 2k 2k k Z 单调递增 2k 2k k Z 单调递减 函数 求函数的单调区间 1 直接利用相关性质 2 复合函数的单调性 3 利用图象寻找单调区间 奇偶性 单调性 单调区间 25 正弦 余弦函数的奇偶性 单调性 例2求下列函数的单调区间 1 y 2sin x 解 y 2sin x 2sinx 2 y 3sin 2x 单调增区间为 所以 解 单调减区间为 26 正弦 余
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文物修复师面试常见问题及答案解析
- 2025年无人机飞行数据分析师中级考试模拟题解析
- 生物-2025届湖南师大附中高三10月第二次月考试卷和解析
- 2025年旅游行业导游岗位竞聘面试指南与题库
- 无用电工知识培训内容课件
- 2025年电子商务网站建设中级实战模拟题与教程
- 无毒知识培训班课件
- 2025年高校招生办公室招聘工作人员模拟题与答案详解
- 2025年医卫类病理学技术初级(师)专业知识-专业知识参考题库含答案解析(5套)
- 2025年营养师考试运动营养学知识点精讲与模拟题解析
- DL T774-2015规程试题库(含答案)
- 2023年电气工程师职称评审个人业务自传
- CB/T 3780-1997管子吊架
- 部编版《县委书记的榜样-焦裕禄》课件1
- 青少年运动员 运动损伤的预防 课件
- 物资供应投标书范本
- 2022年十部经典的三级片电影
- 眼震视图结果分析和临床意义
- 2011-2017国民经济行业分类标准转换对照表
- 《现代汉语》PPT课件(223页PPT)
- 顶推法钢箱梁安装施工方案
评论
0/150
提交评论