




已阅读5页,还剩27页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
应用统计分析部分答案提示第一章 导论一、简答题1、数量性、大量性;差异性、具体性;2、统计数据信息处理的方法包括两个方面,即描述统计方法和推断统计方法。描述统计是主要对已收集到的统计数据信息进行加工、分组、编制统计表、绘制统计图及计算相对数、平均数、方差等,以反映事物的数量特征和数量关系的统计方法。描述统计只限于手头现有的数据,不准备把结果用来推断总体。推断统计以样本为基础,主要内容是研究如何应用概率理论,以样本来推断总体。3、选择与定义问题执行研究的程序数据分析结果的探究和结论一、 名词解释1、请区别以下概念:(1)参数与统计量(参数:用于说明全级总体的指标;统计量:根据样本资料汇总计算的指标,即样本指标。)(2)指标和标志(指标和标志是相对而言的,指标是对总体而言,标志是对总体单位而言的。)(3)离散型变量和连续型变量(离散型变量指只能取整数的变量,连续型变量是指在整数之间可插入小数的变量。)第二章 数据搜集与整理二、 简答题1、统计调查分为专门调查和统计报表制度两种类型,其中专门调查分为普查、抽样调查、重点调查、典型调查四种类型。2、重点调查是在总体中选择部分重点单位进行的调查,借以了解总体的基本情况。所谓重点单位,是指在总体中具有举足轻重地位的单位。这些单位虽然少,但它们调查的标志值在总体标志总量中占有绝大比重,通过对这些单位的调查,就能掌握总体的基本情况。典型调查是根据调查的目的和要求,在对调查对象进行全面分析的基础上,有意识的选择部分有代表性的单位进行的调查,是一种非全面调查。重点调查与典型调查都是非全面调查,它们都存在一个共同的问题,即部分单位的选择问题。重点调查部分单位的选择应把握这些单位在总体中所占的比重要较大,而典型调查部分单位的选择应放在这些单位要具有足够的代表性。3、影响问卷效果的因素主要有三个方面:(1)被调查者的主观倾向;(2)测量工具即问卷本身的问题;(3)问卷环境。4、(1)频数和频率1. 频 数:落在各类别中的数据个数 频 率:某一类别数据占全部数据的比值(2)组数和组距 分组:按某个标志将资料进行分类,划分成各个等级。组距:最大值与最小值之差(1) 等距分组和异距分组 等距分组各组频数的分布不受组距大小的影响;可直接根据绝对频数来观察频数分布的特征和规律;不等距分组各组频数的分布受组距大小不同的影响;各组绝对频数的多少不能反映频数分布的实际状况;需要用频数密度(频数密度频数/组距)反映频数分布的实际状况5、及时性和共享性、便捷性和低费用、交互性和充分性、可靠性和客观性、无时空地域限制6、(1)按随机原则从总体中抽取样本;(2)以样本指标为依据推断总体参数或对总体的某种特征值作假设;(3)抽样调查的误差可以事先计算并加以控制7、有登记性误差和代表性误差两类 登记性误差:由于调查者或被调查者的人为因素所造成的误差。理论上讲可以消除 代表性误差:用样本数据进行推断时所产生的误差。通常无法消除,但事先可以进行控制和计算8、1. 要合理安排统计表的结构2. 总标题内容应满足3W要求3. 数据计量单位相同时,可放在表的右上角标明,不同时应放在每个指标后或单列出一列标明4. 表中的上下两条横线一般用粗线,其他线用细线5. 通常情况下,统计表的左右两边不封口6. 表中的数据一般是右对齐,有小数点时应以小数点对齐,而且小数点的位数应统一7. 对于没有数字的表格单元,一般用“”表示8. 必要时可在表的下方加上注释三、 计算题1、(1) 最大值:108;最小值:50;全距:108-50=58(2) 、(3)产品数量频数向下累计向上累计数量(个)比率(%)数量(个)比率(%)数量(个)比率(%)505936365010060694871447947079183625504386808918364386255090995104896714100109245010024合计50100(4)略(1) 2、组区间区间中心频数频率累积频数累积频率59.5 64.564.5 69.569.5 74.574.5 79.579.5 84.584.5 89.589.5 94.562677277828792148116730.0250.1000.2000.2750.1500.1750.0751513243037400.0250.1250.3250.6000.7500.9251.0003、组数=6组距=4频数分布表如下:按销售额分组(万元)频数(天)频率(%)25304100303561503540153754045922545506150合计4010004、(1)40个企业按产品销售收入分组表按销售收入分组(万元)企业数(个)频率(%)向上累计向下累计企业数频率企业数频率100以下5125512540100010011092251435035875110120123002665026650120130717533825143501301404100379257175140以上375401000375合计401000(2)某管理局下属40个企业分组表按销售收入分组(万元)企业数(个)频率(%)先进企业11275良好企业11275一般企业9225落后企业9225合计401000第三章 数据的汇总一、简答题1、集中趋势,计量方法:算术平均数、众数、中位数、几何平均数等2、离中趋势,计量方法:全距、平均差、方差和标准差3、算术平均数的使用前提:个体标志值之和等于总体的标志总量众数的使用前提:作为代表的标志值的次数要相对集中中位数:不受极端值的影响4、1各变量值与均值的离差之和等于零2各变量值与均值的离差平方和最小3两独立同质变量代数和的算术平均数等于各变量算术平均数的代数和。4. 两独立同质变量乘积的算术平均数等于各变量算术平均数的乘积。5、中位数、众数和算术平均数都反映被研究现象数量分布的集中趋势。当次数分布完全对称时,算术平均数、中位数和众数是一致的,它们相等;当次数分布向右或向左倾斜,那么算术平均数和中位数也分别向左或向右靠近。次数分布向左倾斜,其算术平均数最小,小于中位数,更小于众数,众数最大;次数分布向右倾斜,算术平均数最大,大于中位数,更大于众数,众数最小。6、一组数据中可以自由取值的数据的个数1. 当样本数据的个数为 n 时,若样本均值x 确定后,只有n-1个数据可以自由取值,其中必有一个数据则不能自由取值7、如果样本数据的均值为,标准差为s 的土堆状分布,则落入 三个区间内的观测值数与观测值总数的比率如下: :通常在60%与80%之间,对于对称分布接近70% :对于对称分布接近95% :接近100%二、计算题1、838元2、6.3台3、均值:274.1万元,中位数:272.5万元,标准差:20.82万元4、甲企业平均成本=19.41元,乙企业平均成本=18.29元,原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。5、均值:23.2中位数:24众数:没有众数或众数为:19,25,26全距=最大值最小值=2819=9平均差:2.8方差:7.97标准差:2.826、均值:74.4件;标准差:9.71件7、中位数。因为该收入分布为右偏,且频数较多的几个组的家庭百分比相差不大,众数不十分明显。8、(1)(2)两位调查人员所得到的平均身高和标准差应该差不多相同,因为均值和标准差的大小基本上不受样本大小的影响。(3)具有较大样本的调查人员有更大的机会取到最高或最低者,因为样本越大,变化的范围可能越大。9、算术平均数:8.6万台众数:8.08万台中位数:8.3万台10、(1)均值:77.5分;标准差:6.5分(2)均值:77分;标准差:6.48分(3)均值:78分;标准差:6.48分(4)男女生各占一半时,全班平均考试成绩为(70+80)/2=77.5分;由于男生的平均成绩低于女生,当男生人数多于女生时,会拉低全班的平均成绩;当女生人数多于男生时,会拉高全班的平均成绩。(5)标准差相同。因为男生和女生的标准差相同,都为6分,且女生成绩的离散程度较大,使全班的标准差大于6分,但改变男女的比例并不改变标准差的大小。(6)57人11、中位数:394.08元;均值:393.1元;标准差:172.55元12、均值:A班74.7,B班77.4方差:A班68.866,B班78.28标准差:A班8.8,B班9.2913、2.61 3.97 6.3214、(2)算术平均数:76.75分;中位数:76.67分;众数:76.31分,呈右偏态分布;(3)考试成绩的标准差:9.457分;(4)另一班;(5)及格率:95%;标准差:21.79%15、均值:8.4件标准差:1.56件第四章 抽样基础一、简答题1、概率:又称几率,用以衡量某一特定事项将会发生的可能性有多大。常用方法: 古典法:当我们以“可能出现的机会完全相等”作为概率衡量的假设基础,同时试验的样本空间只包含有限个元素,此种衡量概率大小的方法称为古典法 相对次数法:在相同条件下进行n次随机试验,事件A出现 m 次,则比值 m/n 称为事件A发生的频率。随着n的增大,该频率围绕某一常数P上下摆动,且波动的幅度逐渐减小,取向于稳定,这个频率的稳定值即为事件A的概率 主观法:概率是一个决策者对某事件是否发生,根据个人掌握的信息对该事件发生可能性的判断2、定义:将离散型随机变量的全部可能取值及其相应的概率描述出来离散型随机变量的概率分布(01分布):一个离散型随机变量X只取两个可能的值均匀分布:一个离散型随机变量取各个值的概率相同3、连续型随机变量不是定义再某一特定值的概率上,而是以其变量值发生在某一区间的概率来代替的;连续型随机变量发生在某以特定值上的概率为04、连续型随机变量可以取某一区间或整个实数轴上的任意一个值1. 它取任何一个特定的值的概率都等于02. 不能列出每一个值及其相应的概率3. 通常研究它取某一区间值的概率4. 用数学函数的形式和分布函数的形式来描述5、(1)二项试验进行 n 次重复试验,出现“成功”的次数的概率分布称为二项分布1. 二项分布与贝努里试验有关2. 贝努里试验具有如下属性 试验包含了n 个相同的试验 每次试验只有两个可能的结果,即“成功”和“失败” 出现“成功”的概率 p 对每次试验结果是相同的;“失败”的概率 q 也相同,且 p + q = 1 试验是相互独立的 试验“成功”或“失败”可以计数 3. 举例略(2)泊松分布1. 用于描述在一指定时间范围内或在一定的长度、面积、体积之内每一事件出现次数的分布2. 若某个离散型随机变量能够满足两个假设,即(1)在任何两个相等长度的区间内,事件发生的概率相等;(2)任何时间内,事件的发生与否与其他任何区间内的事件是否发生无关,则称为泊松分布3. 举例略(3)正态分布1.描述连续型随机变量的最重要的分布2.可用于近似离散型随机变量的分布 例如: 二项分布3.经典统计推断的基础 4. 举例略6、大数定律:略作用:大数定律反映了在大量的事物观察中,个别的、偶然的差异相互抵消,显示出事物的共同的、必然的规律性。这说明同质的大量现象有其规律性。随着观察次数达到一定程度,这种规律性就会表现出来,且观察次数越多,表现就越明显。中心极限定理:设从均值为m,方差为s 2的一个任意总体中抽取容量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为、方差为2/n的正态分布作用:中心极限定理规定当样本容量足够大时,其总体分布即可近似为正态分布。7、简单随机抽样、分层抽样、等距抽样、整群抽样、多阶段抽样8、简单随机抽样:从总体的所有单位中按照随机原则抽取样本单位的方式。对于总体中的每个单位,被抽取的机会都是相等的;仅适用于总体单位标志变异程度较小的情况分层抽样:又称类型抽样或分类抽样,它将总体各单位按照某个标志分成若干组,然后在各组中采用简单随机抽样获取样本单位等距抽样:机械抽样或系统抽样。对总体各单位某一标志进行排队,然后依一定顺序按相等间隔抽取样本单位的一种抽样组织形式整群抽样:将总体各单位按一定的标志或要求,分成若干群,然后以群为单位,随机抽取几个群,对被抽中的群进行全部调查多阶段抽样:将整个抽样过程分为两个或两个以上阶段,将两种或两种以上抽样方式结合起来,分步开展。9、整群抽样是对中选群进行全面的调查,它与分层抽样的共同点是都要对总体各单位进行分层(群)。但分层(群)的目的则完全不同的,分层抽样对总体进行分层的目的在于尽可能缩小组内的差异,扩大组间方差,提高抽样效果。而整群抽样分群则是为了扩大群内差异,缩小群间方差,从而达到提高抽样效果的目的。10、有登记性误差和代表性误差两类a) 登记性误差:由于调查者或被调查者的人为因素所造成的误差。理论上讲可以消除b) 代表性误差:用样本数据进行推断时所产生的误差。通常无法消除,但事先可以进行控制和计算11、略二、分析计算题1、(1)样本空间x|0 x 100(2)样本空间k|k为非整数(3)样本空间k|10 k且为整数2、(1)0.68 (2)0.3843、在评估两个项目时,由于各有其不同的可能性,所以可以运用预期平均回报率来反映个别项目的盈利能力,以便做出投资选择两者的预期平均回报率相同,所以有必要评估两个项目回报率的稳定性或风险,来决定哪个较佳。而稳定性或风险可用方差或标准差反映出来项目A项目B4、0.255、0.249 0.1126、0.0071257、0.00598、0.44359、(1)0.0154(2)0.9830(3)0.737910、(1)0.9332(2)0.38311、(1)180;28.2843(3)180;20第五章 参数估计与假设检验一、简答题1、从总体中抽取一个样本,根据该样本的统计量对总体的未知参数作出一个数值点的估计点估计的方法有矩估计法、顺序统计量法、最大似然法、最小二乘法等2、用于估计总体某一参数的随机变量估计量的优良性准则:(1)无偏性:估计量的数学期望等于被估计的总体参数;(2)有效性:一个方差较小的无偏估计量称为一个更有效的估计量;(3)一致性:随着样本容量的增大,估计量越来越接近被估计的总体参数。3、(1)区间估计;(2)置信水平(1)根据一个样本的观察值给出总体参数的估计范围(2)总体未知参数落在区间内的概率4、数据的离散程度,用 s 来测度样本容量,置信水平 (1 - a),影响 Z 的大小5、概念 事先对总体参数或分布形式作出某种假设 然后利用样本信息来判断原假设是否成立2. 类型 参数假设检验 非参数假设检验3. 特点 采用逻辑上的反证法 依据统计上的小概率原理6、提出原假设和备择假设,确定适当的检验统计量,规定显著性水平a,计算检验统计量的值,作出统计决策7、1.第一类错误(弃真错误) 原假设为真时拒绝原假设 会产生一系列后果 第一类错误的概率为a 被称为显著性水平2.第二类错误(取伪错误) 原假设为假时接受原假设 第二类错误的概率为 b(Beta)8、双侧检验属于决策中的假设检验。也就是说,不论是拒绝H0还是接受H0,我们都必需采取相应的行动措施;单侧检验:(1)检验研究中的假设1. 将所研究的假设作为备择假设H12. 将认为研究结果是无效的说法或理论作为原假设H0。或者说,把希望(想要)证明的假设作为备择假设单侧检验:(2)检验某项声明的有效性1. 将所作出的说明(声明)作为原假设2. 对该说明的质疑作为备择假设9、略二、计算题1、解:已知N(m,1.52),x5.25, n=144, 1-a = 0.95,a/2=1.96 总体均值m的置信区间为2、解:已知N(m,502),x1600, n=25, 1-a = 0.95,a/2=1.96 总体均值m的置信区间为3、5, 5.54、解:已知N(m,s2),x=72, s=9.3, n=36, 1-a = 0.95,ta/2=2.0639。5、解:已知 XAN(mA,2502); XB N(mB,4002);xA=1500,xB=1600,sA2 =2502;sB2 = 4002 nA= nB =100mA- mB置信度为95%的置信区间为6、解:已知 X1N(m1,s2);X2 N(m2,s2);x1=920,x2=1000,s1=120;s2=150 n1=10 ; n2=12;s12= s12 m1- m2置信度为90%的置信区间为 7、解:已知 n=400 ,p 0.721 , np =400=5, n(1- p )=111.65,a= 0.95, a/2=1.96 8、2.6, 9.49、解:已知 p1=0.10, p2=0.19,1-a=0.95, n1=900,n2=400P1- P2置信度为95%的置信区间为10、解:已知 x1=30.63,S12 =13.63;x2=27.28,S22 =46.71; F1-a/2 (5, 6)=F0.95 =4.39 Fa/2 (5, 6)=F0.05=0.23s12/s22置信度为90%的置信区间为11、解:已知s12=11.36, s22=10.25, s32=12.13 a=0.05, Za/2=1.96,D=112、解: 已知D=0.05,a=0.05,Za/2=1.96,p=0.4913、 68.85, 75.1514、对做出的声明作为原假设: H0: m 3 H1: m 3 a = 0.01检验统计量: 决策: 在 a = 0.01的水平上拒绝H015、H0: m = 4.55 H1: m 4.55 Z/2=1.96 n = 9检验统计量: 决策: 在 a = 0.05的水平上接受H016、H0: m 700;H1: m 250;a = 0.05;n = 25检验统计量: ;决策: 在 a = 0.05的水平上拒绝H018、H0: p 5%;H1: p 5%;a = 0.05;n = 50检验统计量: 决策: 在 a = 0.05的水平上拒绝H019、H0: m1- m2 = 0;H1: m1- m2 0;a = 0.05;n1 = 81,n2 = 64检验统计量:决策: 拒绝H020、 H0: m = 21 H1: m21 a = 0.05检验统计量: 决策: 在 a = 0.05的水平上拒绝H0第六章 方差分析一、简答题1、(1)因素或因子;(2)水平;(3)观察值;(4)总体;1. 因素或因子所要检验的对象称为因子2. 水平因素的具体表现称为水平3. 观察值在每个因素水平下得到的样本值4. 总体因素的每一个水平可以看作是一个总体2、1.比较两类误差,以检验均值是否相等2.比较的基础是方差比3.如果系统(处理)误差显著地不同于随机误差,则均值就是不相等的;反之,均值就是相等的4.误差是由各部分的误差占总误差的比例来测度的3、随机误差在因素的同一水平(同一个总体)下,样本的各观察值之间的差异随机因素的影响,或者说是由于抽样的随机性所造成的,称为随机误差 系统误差在因素的不同水平(不同总体)下,各观察值之间的差异由于抽样的随机性所造成的,或由系统性因素造成的,称为系统误差4、每个总体都应服从正态分布对于因素的每一个水平,其观察值是来自服从正态分布总体的简单随机样本各个总体的方差必须相同对于各组观察数据,是从具有相同方差的总体中抽取的观察值是独立的5、总离差平方和(SST)、误差项离差平方和(SSE)、水平项离差平方和 (SSA) 之间的关系SST = SSE + SSASST反映了全部数据总的误差程度;SSE反映了随机误差的大小;SSA反映了随机误差和系统误差的大小6、方差来源平方和SS自由度df均方MSF 值组间(因素影响)SSAk-1MSAMSA组内(误差)SSEn-kMSE总和SSTn-17、1. 分析两个因素(因素A和因素B)对试验结果的影响 2. 分别对两个因素进行检验,分析是一个因素在起作用,还是两个因素都起作用,还是两个因素都不起作用3. 如果A和B对试验结果的影响是相互独立的,分别判断因素A和因素B对试验指标的影响,这时的双因素方差分析称为无交互作用的双因素方差分析4. 如果除了A和B对试验结果的单独影响外,因素A和因素B的搭配还会对销售量产生一种新的影响,这时的双因素方差分析称为有交互作用的双因素方差分析 5. 对于无交互作用的双因素方差分析,其结果与对每个因素分别进行单因素方差分析的结果相同8、1. 每个总体都服从正态分布对于因素的每一个水平,其观察值是来自正态分布总体的简单随机样本2. 各个总体的方差必须相同对于各组观察数据,是从具有相同方差的总体中抽取的3. 观察值是独立的二、计算题1、接受原假设。2、无显著差异。3、无显著差异。4、无显著差异。5、FA=1.32,P0.05,接受原假设;FB=1.70,P0.05,接受原假设。6、因素A有显著影响,因素B有特别显著影响。7、FA=0.2 ,施肥方式对产量无显著影响;FB=1.70,水温对产量有显著影响。8、因素A有显著影响,因素B有显著影响,A与B交互作用有显著影响。9、Pta/27、(1)r=0.9478(2)y=395.59+0.8958x(3)y=1380.978、(1)r=0.9558(2)y=20.4+5.2x9、(1)0.97;(2)y=51.323+12.896x10、(1) y=-14.209+0.321x(2)回归方程特别显著(3)(529.32,1047.26)第八章 时间数列一、简答题1、1.同一现象在不同时间上的相继观察值排列而成的数列2.形式上由现象所属的时间和现象在不同时间上的观察值两部分组成构成:指标值,又称变量值各变量值所属的时间2、1. 绝对数时间数列 一系列绝对数按时间顺序排列而成 时间数列中最基本的表现形式 反映现象在不同时间上所达到的绝对水平 分为时期数列和时点数列 时期数列:现象在一段时期内总量的排序 时点数列:现象在某一瞬间时点上总量的排序2. 相对数时间数列 一系列相对数按时间顺序排列而成3. 平均数时间数列 一系列平均数按时间顺序排列而成3、一致性原则;时期长短应当统一4、 水平指标发展水平 现象在不同时间上的观察值 说明现象在某一时间上所达到的水平 表示为1 , 2, , n 或 0 , 1 , 2 , , n平均发展水平 现象在不同时间上取值的平均数,又称序时平均数 说明现象在一段时期内所达到的一般水平 不同类型的时间数列有不同的计算方法 速度指标增长量报告期水平与基期水平之差,说明现象在观察期内增长的绝对数量有逐期增长量与累积增长量之分 逐期增长量 报告期水平与前一期水平之差 计算形式为:i=i- i-1 (i =1,2,n) 累积增长量 报告期水平与某一固定时期水平之差 计算形式为:i= i- 0 (i=1,2,n)各逐期增长量之和等于最末期的累积增长量 平均增长量观察期内各逐期增长量的平均数描述现象在观察期内平均增长的数量发展速度1. 报告期水平与基期水平之比2. 说明现象在观察期内相对的发展变化程度3. 有环比发展速度与定基发展速度之分增长速度2. 增长量与基期水平之比3. 又称增长率4. 说明现象的相对增长程度5. 有环比增长速度与定期增长速度之分平均发展速度1. 观察期内各环比发展速度的平均数2. 说明现象在整个观察期内平均发展变化的程度3. 通常采用几何法(水平法)计算二、计算题1、131.7%, 31.7%2、(1)7.43%(2)159.4%3、(1)20.11%(2)15.61%(3)9209.96万元模拟题(1)答案一、简答题1、(教材P11-13)2、(教材P18-19)3、(教材P19)二、计算题1、答案:(1)计算算术平均数全局劳动生产率(万元/人)企业数(个)组中值组职工平均人数(人)355450057306300079308100009112010400011131012150013155141000合计10020000(2)计算众数由数列中可观察到全员劳动生产率在79万元/人这一组为众数组:(3)计算中位数计算中位数位次:全局劳动生产率(万元/人)企业数(个)组职工平均人数(人)累积人数(人)355500500573030003500793010000135009112040001750011131015001900013155100020000合计10020000中位数位次为20000/2=10000,中位数组为79这一组2、答案:已知N(m,0.152),x2.14, n=9, 1-a = 0.95,a/2=1.96 总体均值m的置信区间为我们可以95的概率保证该种零件的平均长度在21.30221.498 mm之间3、答案:(1)提出原假设和备择假设H0: 1-2=0;H1: 1-20(2)确定统计量:a = 0.05;n1 = 32,n2 = 40(3)确定临界值:(4)决策:因为ZZ/2,所以拒绝原假设结论:有证据表明两种方法生产的产品其抗拉强度有显著差异三、分析论述题1、答案概要:方差来源平方和自由度均方F值组间SSAk-1MSAMSA/MSE组内SSEn-kMSE总和SSTn-1SST反映了全部数据总的误差程度;SSE反映了随机误差的大小;SSA反映了随机误差和系统误差的大小均方:各离差平方和的大小与观察值的多少有关,为了消除观察值多少对离差平方和大小的影响,需要将其平均,这就是均方,也称为方差SST 的自由度为n-1,其中n为全部观察值的个数SSA的自由度为k-1,其中k为因素水平(总体)的个数SSE 的自由度为n-k如果均值相等,F=MSA/MSE趋近于12、答案概要:(1)相关分析中,变量 x 变量 y 处于平等的地位;回归分析中,变量 y 称为因变量,处在被解释的地位,x 称为自变量,用于预测因变量的变化(2)相关分析中所涉及的变量 x 和 y 都是随机变量;回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量,也可以是非随机的确定变量(3)相关分析主要是描述两个变量之间线性关系的密切程度;回归分析不仅可以揭示变量 x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公用设备工程师之专业案例(暖通空调专业)强化训练试卷B卷附答案
- 幼儿教育个人简历
- 大学生性教育
- 2025年工程地震观测设备项目合作计划书
- 包装设计社会调研
- 毛毛阅读课课件
- 其他安全工程师考试试题及答案
- 数据采集考试试题及答案
- 电厂骨干考试试题及答案
- 丙肝考试试题及答案
- 用友大易-2022雇主品牌白皮书
- 《公路桥梁施工监控技术规程》(JTGT3650-01-2022)
- 珠宝零售店合伙人退伙协议
- 南方区域并网发电厂两个细则完整版
- 2024年美国户外露营装备市场现状及上下游分析报告
- 冲压模具成本分析表(模板)
- 2024雇主品牌调研中国大陆区报告-任仕达-202406
- 神经电生理评估在康复医学的应用
- 第7课全球航路的开辟和欧洲早期殖民扩张(课件)-【中职专用】《世界历史》趣味课堂同步教学课件(高教版2023基础模块)
- MOOC 化学与社会-大连理工大学 中国大学慕课答案
- MOOC 国际交流学术英文写作-湖南大学 中国大学慕课答案
评论
0/150
提交评论