最新平面向量复习基本知识点及经典结论总结_第1页
最新平面向量复习基本知识点及经典结论总结_第2页
最新平面向量复习基本知识点及经典结论总结_第3页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档1、向量有关概念:平面向量 复习基本知识点及经典结论总结( 1)向量的概念 :既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意 不能说向量就是有向线段 ,为什么?(向量可以平移) 。如已知 a ( 1,2),b( 4,2),则把向量 ab 按向量 a ( 1,3)平移后得到的向量是 (答:( 3,0 )( 2) 零向量 :长度为 0 的向量叫零向量,记作: 0 ,注意 零向量的方向是任意的 ;( 3) 单位向量 :长度为一个单位长度的向量叫做单位向量( 与 ab 共线的单位向量是( 4) 相等向量 :长度相等且方向相同的两个向量叫相等向量,相等向量有传递性;ab );| ab |( 5) 平行向量(也叫共线向量):方向相同或相反的非零向量a 、 b 叫做平行向量,记作:a b , 规定零向量和任何向量平行。提醒 :相等向量一定是共线向量,但共线向量不一定相等;两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;平行向量无传递性!(因为有 0 ) ;三点a、b、c 共线ab、ac 共线;( 6) 相反向量 :长度相等方向相反的向量叫做相反向量。a 的相反向量是a 。如下列命题:( 1)若 ab ,则 ab 。(2)两个向量相等的充要条件是它们的起点相同,终点相同。( 3)若 abdc,则 abcd 是平行四边形。 ( 4)若 abcd 是平行四边形,则 abdc 。( 5)若 ab,bc ,则 ac 。( 6)若 a / b, b/ c , 则 a / c 。其中正确的是 (答:(4)( 5)2、向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如ab ,注意起点在前,终点在后;( 2)符号表示法:用一个小写的英文字母来表示,如a , b , c 等;( 3)坐标表示法:在平面内建立直角坐标系,以与x 轴、 y轴方向相同的两个单位向量i, j 为基底, 则平面内的任一向量a 可表示为axiy jx, y ,称x, y为向量 a 的坐标, a x, y叫做向量 a 的坐标表示。如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。3. 平面向量的基本定理:如果 e1 和 e2 是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数1 、2 ,使 a=1 e12 e2。如( 1) 若 a13(1,1),b(1, 1),c(1,2), 则 c ( 答:ab );( 2 ) 下列 向量组中,能作为平面内所有向量基底的是a.1222e(0,0), e(1, 2)b.e(1,2), e(5,7)c. e(3,5), e(6,10)d. e(2,3), e( 1 ,3) (答: b );( 3)12121224已知 ad, be 分别是abc 的边 bc, ac上的中线 ,且ada, beb ,则 bc 可用向量 a, b 表示为 (答: 2 a4b );( 4) 已知abc中,点 d 在 bc 边上,且cd2 db , cdr abs ac ,则 r33s 的值是 (答: 0)4、实数与向量的积:实数与向量 a 的积是一个向量,记作a ,它的长度和方向规定如下:1aa ,2当0 时,a 的方向与 a 的方向相同,当0;当 p 点在线段p1 p 2 的延长线上精品文档时 1;当 p 点在线段 p 2 p 1 的延长线上时10 ;若点 p 分有向线段p1p2 所成的比为,则点 p 分有向线段p p 所成的比为1 。如若点 p 分 ab 所成的比为3,则 a 分 bp 所成的比为 (答:7 )2 1( 3)线段的定比分点公式:设 p (x ,y )、p (x4, y ) ,p(x,y) 分有向线段3xx1x2pp 所成的比为,则1,111222x1 2x1x2 2yy1y2 1特别地,当 1 时,就得到线段p1 p 2 的中点公式yy1y2 2。在使用定比分点的坐标公式时,应明确( x, y) ,(x1, y1 ) 、 ( x2 , y2 ) 的意义,即分别为分点,起点,终点的坐标。在具体计算时应根据题设条件,灵活地确定起点,分1点和终点,并根据这些点确定对应的定比。如( 1)若 m (-3, -2),n (6, -1),且mpmn,则点 p 的坐标为3 (答:(6,7 ) );( 2) 已知3a( a,0), b(3,2a) ,直线 y1 ax 与线段 ab交于 m ,且 am22mb ,则 a 等于 (答:或)11. 平移公式 :如果点p( x, y) 按向量ah, k平移至p( x , y) ,则xx hyy k;曲线f ( x, y)0 按向量a h, k平移得曲线f ( xh, yk)0 .注意 :( 1) 函数按向量平移与平常“左加右减”有何联系?(2) 向量平移具有坐标不变性,可别忘了啊!如( 1) 按向量 a 把 (2,3) 平移到 (1,2) ,则按向量a 把点 (7,2) 平移到点 (答:(,);( 2)函数 ysin 2x 的图象按向量a 平移后, 所得函数的解析式是ycos 2 x1,则 a (答: (,1) )412、向量中一些常用的结论:( 1)一个封闭图形首尾连接而成的向量和为零向量,要注意运用;( 2) | a | b | | ab | | a | b |,特别地,当a、b 同向或有 0| ab | | a | b | a | b | | ab |; 当a、b反 向 或 有0| ab | a|b| a|b| a| b; 当a、b不 共 线| a|b| a|b a|( 这b些和实数比较类似).( 3)在abc 中,若a x , y, b x , y,cx, y,则其重心的坐标为gx1x2x3, y1y2y3。如1122333324若 abc的三边的中点分别为( 2,1)、( -3 ,4)、( -1 ,-1 ),则 abc的重心的坐标为 (答:(,) ); 33 pg1 ( papbpc )3g 为abc 的重心,特别地papbpc0p 为abc 的重心; papbpbpcpcpap 为abc 的垂心;向量(abac)(0) 所在直线过abc 的内心 ( 是bac 的角平分线所在直线) ;| ab | ac |精品文档 | ab| pc| bc| pa| ca | pb0pabc 的内心;( 3)若 p 分有向线段p1p2所成的比为,点 m 为平面内的任一点,则mpmp1 1mp2,特别地 p 为 p1 p2 的中点mpmp1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论