




免费预览已结束,剩余3页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
-可编辑修改 -设计思路课题:探究原函数与导函数的关系首师大附中数学组王建华这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一 定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要, 重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。整个教学流程1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线xa 对称,研究前面的四个命题还是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。4. 已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。教学目标在这个探究过程中1. 加强学生对导函数与原函数相生相伴的关系的理解;2. 增强学生对函数对称性的理解和抽象概括表达能力;3 体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。教学重点以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、 辨别真伪的过 程 。 教学难点灵活运用所学知识探索未知领域。新课引入前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,你能根据原函数的图像画出导函数的示意图吗?一探究由原函数的奇偶性能否推出导函数的奇偶性。问题 1 已知函数yf ( x) 的图像,请尝试画出其导函数的图像示意图。f ( x)x3yyf ( x)3x2yoxoxf ( x)x2yf ( x)xyyoxoxyox导函数的实质是原函数的瞬时变化率,导函数的正负反应了原函数的单调性,导函数的大小反应了原函数增减的快慢。从图像的整体性质上看,你还有什么发现?猜想 p : 可导的奇函数的导函数是偶函数, 猜想 q: 可导的偶函数的导函数是奇函数。问题 2 你能根据图象上解释一下你的猜想吗?奇函数关于原点中心对称,它的曲线在原点两侧等距离处升降速度相同,即切线斜率相等;偶函数关于y 轴对称, 它的曲线在y 轴两侧等距离处升降速度绝对值相等,即切线斜率互为相反数。问题 3 尝试证明你的猜想p: 已知yf ( x) 是可导的奇函数,求证yf (x)时偶函数分析 1:欲证yf ( x)时偶函数,只需证f (x)f (x)若 将 f (x) 理解将f ( x) 中的 x 替换为x 得到的函数,可以用导数定义证明。证明:当yf ( x) 是奇函数时 ,对定义域中的任意x 都有f (x)f (limxx)f (x)limf ( xx)f ( x)limf ( x)f ( xx)f (x)x 0xx 0xx 0x所以 yf ( x) 时偶函数分析 2.用复合函数求导证明:当yf ( x) 是奇函数时,对定义域中的任意x 都有 f (x)f (x)两边对 x 求导得 f (x)f ( x) ,即f (x)(1)f (x)得 f (x)f (x) ,所以yf ( x)时偶函数命题q 同理可证 .思考: 看来已知原函数的奇偶性,我们可以确定导函数的奇偶性,那么已知导函数的奇偶性能否推知原函数的奇偶性呢?命题p 和 q 的逆命题是否成立呢?二探究由导函数的奇偶性能否推出原函数的奇偶性。问题 4p 和 q 的逆命题是否成立?p 的逆命题:若yf ( x) 是偶函数,则yf ( x) 奇函数此命题不正确,可举出反例:如yf (x)x 是奇函数,而原函数yf ( x)1 x2c2当 c 不为 0 时,原函数不是偶函数。这是什么原因造成的呢?因为原函数定了, 导函数是唯一确定的, 而同一个导函数的原函数有无穷多个。 一个函数向上或向下平移后导函数是不变的, 直观理解是切线的斜率不变。而函数上下平移就不能保证图象关于原点中心对称了。q 的逆命题:若yf ( x) 是奇函数,则yf ( x) 偶函数证明:yf ( x)是奇函数时 f ( x)f (x)f ( x)f (x)(1)f (x)f (x)0能否推出f ( x)f (x)0 ?只能推出f ( x)f (x)c ,思考 c 是确定的值吗?能求吗?问题转化为导函数是0,原函数是什么?可以举出分段的常数函数,为使此命题成立,我们加强一下条件,将命题改为“对于在r 上连续可导的函数,若yf (x)是奇函数,则yf ( x) 偶函数”。此时 yf(x) 在 x0 处有定义,则f (0)f (0)c0 ,此时可得f ( x)f (x) ,原函数是偶函数。三探究由原函数的对称性能否推出导函数的对称性对于连续的可导函数,原函数的奇偶性可以推出导函数的奇偶性,而逆命题中当导函数为奇函数时,原函数是偶函数,但当导函数为偶函数时,原函数不一定是奇函数,那么此时原函数虽然不是奇函数了,它是不是也有什么性质呢?它的图像应该是中心对称的。能否将刚才的结论推广一下?问题 5 奇函数图象特征是关于原点中心对称,偶函数图象特征是关于y 轴对称,能否将上述命题推广一下?p 的推广命题r :若可导函数yf (x)关于 (a, b) 对称, 则它的导函数关于直线xa 对称。证明:yf (x) 关于 ( a, b) 对称,则f (x)f (2 ax)2b ,f (x)f (2ax)(1)0即 f (x)f (2ax) ,所以其导函数关于直线xa 对称。q 的推广命题s : 若可导函数yf (x)关于 xa 对称,则它的导函数关于(a,b) 对称证明:yf (x) 关于 xa 对称,则f (x)f (2 ax) ,f (x)f (2ax)(1)即 f (x)f (2ax)所以其导函数关于(a,0) 对称导函数的对称中心在x 轴上 . 修改命题 s .若可导函数yf ( x) 关于 xa对称,则它的导函数关于( a,0) 对称令 f (x)f (2ax) 中 xa 可得f (a)0 ,能否从图像中找到解释?四探究由导函数的对称性能否推出原函数的对称性问题 6思考:命题r , s 逆命题是否成立?命题 r 的逆命题: 对于在 r 上可导的函数yf (x) ,若它的导函数关于直线xa 对称, 则原函数关于(a, b) 对称证明:yf ( x)关于直线xa 对称,则f (ax)f (ax)而 f(ax)f ( ax)f (ax)f (ax)0得 f (ax)f (ax)c当 x0 时可得 c2 f (a),所以f ( ax)f (ax)2 f (a) ,即函数yf (x) 关于 ( a,f (a)对称。对称中心在函数图像上。命题 s 的逆命题:(课上只写出命题,判断验证留作课后思考题)对于在r 上连续可导的函数xa对称yf (x) ,若它的导函数关于(a, b) 对称,则原函数关于直线证明:yf ( x)关于直线 (a,f (a)对称,则f (ax)f (ax)2b而 f(ax)f ( ax)f (ax)f (ax)2b得 f (ax)f (ax)2bxc当 b0 时,此命题不成立。当 b0时,由 x0 时可得 c0 ,所以f (ax)f (ax)0 ,即函数yf (x) 关于 xa 对称。命题 r 的逆命题需要修正 ,若对于在r 上连续可导的函数yf ( x) ,若它的导函数关于( a,0) 对称,则原函数关于直线xa 对称五原函数与导函数对称性联系的应用1.我们知道二次函数都是有对称轴的,而二次函数又是三次函数的导函数,你能由此得出三次函数具有什么性质?分析: 由命题 s 的逆命题知三次函数必有对称中心。对称中心的横坐标与导函数的对称轴的横坐标相同。求任意三次多项式函数yax3bx2cxd 的对称中心。解: y ax3bx2cxd3ax22bxc ,其对称轴是xb ,将此值代入解析式可3a得对称中心纵坐标。即函数yax3bx2cxd 的对称中心为(b3a, f (b3a) .2. 若 f ( x)a sin( x4)bsin( x4)( ab0) 是偶函数,则a, b 的关系是解:由其导函数是奇函数,且在0 处有定义,可得f (0)0 ,得 ab0 ,代回检验。小结:整体结构:原函数导函数导函数原函数p:可导的奇函数的导函数是偶函数(真)p 逆:若 yf ( x) 是偶函数,则奇偶性q:可导的偶函数的导函数是奇函数yf (x) 奇函数 .(假)(真)q逆 : 若 yf ( x) 是 奇 函 数 , 则yf (x) 偶函数.(真)r:若 r 上可导函数yf ( x) 关于 ( a,b)r 逆:对于在 r 上可导的函数yf ( x) ,对称,则它的导函数关于直线xa 对若它的导函数关于直线xa 对称,则对称性(a, f (a )称。(真)原函数关于对称.s: 若 r 上可导函数yf ( x) 关于 xa(真)s 逆(改) :对于在r 上可导的函数对称,则它的导函数关于(a,0) 对称。yf (x) ,若它的导函数关于(a,0) 对(真)称,则原函数关于直线xa 对称。( 真)证明上述命题的思路:1. 由原函数研究导函数用符合函数求导;2. 由导函数研究原函数从要证的式子出发寻找原函数的性质。课后思考研究:判断 s 逆是否正确,如果正确尝试证明,若不正确举出反例。教学反思:学生对这样的课很感兴趣,一方面可以在探索的过程中加深对导数概念的理解,另一方面可以感受到数学内部的严谨性和对称美。命题的产生来自经验,命题的证明需要用复合函 数的导数这一工具沟通原函数和导函数的对应关系,开始学生觉得有点吃力,需要教师加以启发引导。 但证
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国男性护理液行业市场全景分析及前景机遇研判报告
- 中班美术活动变脸
- 无创呼吸机应用和护理
- 智慧教育发展
- 煤矿机电运输事故原因及控制对策探究
- 物业品质管理与培训
- 车用尿素研发生产与销售合作协议书
- 房地产租赁合同补充协议书
- 员工培训计划表
- 知识产权侵权代理授权协议
- 2025年河北交通投资集团公司招聘笔试题库含答案解析
- 机场行业安全生产培训
- 医药代表的临床经验分享
- 《大数据导论》期末考试复习题库(含答案)
- 艺术家进校园活动安排计划
- (电大)国开大学2024年秋《铸牢中华民族共同体意识》试卷1-3参考答案
- 2025版国家开放大学法律事务专科《宪法学》期末考试总题库
- 【MOOC】融合新闻:通往未来新闻之路-暨南大学 中国大学慕课MOOC答案
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 防雷应急演练方案
- 半结构化面试题100题
评论
0/150
提交评论