实践总结各类工业污水水质.docx_第1页
实践总结各类工业污水水质.docx_第2页
实践总结各类工业污水水质.docx_第3页
实践总结各类工业污水水质.docx_第4页
实践总结各类工业污水水质.docx_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、屠宰废水我国大部分城市已基本上实现了禽畜的定点集中屠宰,同时随着人们生活水平的不断提高,屠宰场的规模也在不断扩大,屠宰废水的排放量越来越大,而环保部门要求具有一定规模的屠宰场都必须建立专门的废水处理站。废水主要来自屠宰车间、分割肉加工车间、肉制品加工车间和厂区生活污水等,废水中主要含有血液、油脂、碎肉、蓄毛和粪便等,属于高浓度有机废水。一般屠宰废水的水质具有以下特点:屠宰废水一般呈红褐色,有难闻的腥臭味,其中含有大量的血污、油脂质、毛、肉屑、骨屑、内脏杂物、未消化的食物、粪便等污物,固体悬浮物含量高。屠宰废水有机物含量高,可生化性好。其中高浓度有机质不易降解,处理难度较大,宰废水中的营养物主要是氮、磷,其中氮主要以有机物或铵盐形式存在,而磷主要以磷酸盐的形式存在。山东正清环保科技有限公司注册资金500万元,是一家专门从事污水治理工程、异味处理、环保专用设备设计与加工的实力企业,具有专业的研发攻关、工程安装调试服务团队。经过长期的实验及工程经验,屠宰废水处理厌氧和好氧工艺是确保达标的关键,但预处理是保证系统稳定运行的关键。因此,对于屠宰废水我司一般确定“强化预处理+厌氧+好氧”的主体处理工艺,具体根据企业的具体水质进行合理化工艺设计,把好工程质量细节关,确保污水处理系统的稳定运行、低能耗高效率的处理能力和管理操作的优质化。二、养殖废水沼气工程近年来,随着我国农业结构的调整和农业产业化的推进,及人们生活质量的不断提高,规模化、集约化的畜禽养殖业得以迅猛发展,成为我国农业农村经济的重要组成部分。但是禽畜养殖业大力发展所带来的环境污染问题也日益严重,它不仅影响经济发展,而且还危及生态安全,已成为人们普遍关注的社会问题。目前,我国每年约产生畜禽粪便45亿吨,其化学需氧量(COD)远远超过我国工业废水和生活污水之和。畜禽养殖污染已成为继工业污染、生活污染之后的第三大污染源,成为我省农村污染的主要原因之一。因此,为有效减少畜禽养殖废水对环境的污染,保证我省畜禽养殖业的稳步健康发展,因地制宜地研究开发畜禽废水高效、低成本、资源化利用的技术和与养殖业、种植业有机结合的生态处理利用技术是非常必要的。畜禽养殖污水主要包括猪场、牛场及蛋鸡场的粪污水,据有关资料显示,目前畜禽养殖业的污水已远远高于人们生活污水和工业废水造成的污染,而且还有扩大趋势。同时,由于畜禽场种类、养殖方式和管理水平、各地地理气候等的不同,畜禽污水的水量和水质变化很大,一般CODcr300050000mg/L、BOD5200025000 mg/L、SS200022000 mg/L、氨态氮3002000mg/L、磷50150 mg/L。因此用传统思路,完全照般工业方法处理畜禽污水,一般都存在投资大、达标排放不稳定、运行费用高的特点,对作为微利行业的畜禽养殖业来说是很难承受的。该类废水特点:1、 COD浓度较高,属于高浓度有机废水。2、 SS很高,主要为粪便等固体有机物。3、 生化性高,较易处理。4、 N、P较高,营养丰富。山东正清环保科技有限公司注册资金500万元,是一家专门从事污水治理工程、异味处理、环保专用设备设计与加工的实力企业,具有专业的研发攻关、工程安装调试服务团队。我公司具有自己知识产权的USR固液发酵反应器被广泛应用于了木薯酒精全糟废水、制药菌渣废水、牛羊猪养殖废水处理项目上,具有沼气产量高、处理率高、出水COD低等特点。该类废水可以使用USR将高COD废水变成清洁能源沼气,UST出水再经过重点氨氮设计的好氧处理即可达标排放。该类废水资源利用能力强,经济效益高。三、化工废水处理化学工业包括有机化工和无机化工两大类,化工产品多种多样,成分复杂,由化工厂排出的废水称为化工废水。化工废水多种多样,多数有剧毒,不易净化,在生物体内有一定的积累作用,在水体中具有明显的耗氧性质,易使水质恶化。化工产品多种多样,因此对其生产废水不能一概而论,但化学工业废水按成分可主要分为三大类:第一类为含有机物的废水,主要来自基本有机原料、合成材料、农药、染料等行业排出的废水;第二类为含无机物的废水,如无机盐、氮肥、磷肥、硫酸、硝酸及纯碱等行业排出的废水;第三类为既含有有机物又含有无机物的废水,如氯碱、感光材料、涂料等行业。对于化工行业废水,因产品而生产废水水质差别较大,但综合特点如下:1、有毒性和刺激性。化工废水中有些含有如氰、酚、砷、汞、镉或铅等有毒或剧毒的物质,在一定的浓度下,对生物和微生物产生毒性影响。另外也可能含有无机酸、碱类等刺激性、腐蚀性的物质。2、有机物浓度高。特别是石油化工废水中各种有机酸、醇、醛、酮、醚和环氧化物等有机物的浓度较高,在水中会进一步氧化分解,消耗水中大量的溶解氧,直接影响水生生物的生存。3、pH不稳定。化工排放的废水时而强酸性,时而强碱性的现象是常有的,对生物、建筑物及农作物都有极大的危害。4、营养化物质较多。含磷、氮量较高的废水会造成水体富营养化,使水中藻类和微生物大量繁殖,严重时会造成“赤潮”,影响鱼类生长。5、水质成分复杂,处理比较困难。化工废水多数企业因为水质成分复杂,有害物质不单一,综合处理较为困难。6、总盐分较高。总盐分高的废水主要是因为生产所需酸类、碱类较多所导致,如肟、胺、腙类生产废水总盐分可以达到10%以上,甚至是30%左右。山东正清环保科技有限公司注册资金500万元,是一家专门从事污水治理工程、异味处理、环保专用设备设计与加工的实力企业,具有专业的研发攻关、工程安装调试服务团队。公司在化工领域技术性强,根据不同行业、不同产品的生产性质,具体分析水质特点,制定详细的技术方案,确保方案的可行性;优化工艺设置、合理设备选型,根据企业自身情况特点等,进行方案设计、工程安装、设备选购的细节化设计及施工。四、食品废水由于食品种类繁多,原料来源广泛,食品工业废水具有悬浮物、油脂含量高,重金属离子含量少,B/C数值大,水量变化幅度大,氮、磷化合物含量高,某些情况下水温也较高等特点。对于食品工业污水,一般先是采用固液分离技术去除污水中的悬浮物和漂浮物,再采用生物处理技术去除水中氨氮、COD等污染物,最后根据企业排放点的情况,选择是否进行深度处理,选择何种深度处理工艺。食品废水在处理过程中会产生污泥、废油、废酸、废碱、加工过程中产生的动植物废弃物也应该进行无害化处理。食品加工废水主要来自三个生产工段。(1)原料清洗工段。大量砂土杂物、叶、皮、鳞、肉、羽、毛等进入废水中,使废水中含大量悬浮物。(2)生产工段。原料中很多成分在加工过程中不能全部利用,未利用部分进入废水,使废水含大量有机物。(3)成形工段。为增加食品色、香、味,延长保存期,使用了各种食品添加剂,一部分流失进入废水,使废水化学成分复杂。食品加工废水的水量水质特性主要体现在6个方面:(1)生产随季节变化,废水水质水量也随季节变化。(2)废水量大小不一,食品工业从家庭工业的小规模到各种大型工厂,产品品种繁多,其原料、工艺、规模等差别很大,废水量从数m3/d到数千m3/d不等。(3)食品工业废水中可降解成分多,对于一般食品工业,由于原料来源于自然界有机物质,其废水中的成分也以自然有机物质为主,绝大多数废水不含有毒物质,故可生物降解性好,其BOD5/COD高达0.6以上。(4)废水水质每天内波动较大。(5)废水中含各种微生物,包含致病微生物,废水易腐败发臭。(6)废水中氮、磷含量高。选择食品排放污水处理工艺,不仅要考虑污水中有害物质的组成,而且要了解排出污水水质、水量的瞬间变化情况,这些对选择污水处理工艺、设备和日后运行管理都很重要。食品加工废水中较大悬浮物和油脂可以采用悬浮分离技术去除,以SS值表示的水中悬浮物(包括胶体)可以采用固液分离技术去除;污水中以COD、BOD等表示的有害物质可以采用生物处理技术去除;处理后的水要经过消毒处理才能排放,生物处理过程中产生的污泥要进行脱水处理。五、纺织印染行业纺织印染废水具有水量大、有机污染物含量高、碱性大、水质变化大等特点,属难处理的工业废水之一,废水中含有染料、浆料、助剂、油剂、酸碱、纤维杂质、砂类物质、无机盐等。目前用于印染废水处理的主要方法有物化法、生化法、化学法以及几种工艺结合的处理方法,而废水处理中的预处理主要是为了改善废水水质,去除悬浮物及可直接沉降的杂质,调节废水水质及水量、降低废水温度等,提高废水处理的整体效果,确保整个处理系统的稳定性,因此预处理在印染废水处理中具有极其重要的地位。印染废水的水质复杂,污染物按来源可分为两类:一类来自纤维原料本身的夹带物;另一类是加工过程中所用的浆料、油剂、染料、化学助剂等。分析其废水特点,主要为以下方面:水量大、有机污染物含量高、色度深、碱性和pH值变化大、水质变化剧烈。因化纤织物的发展和印染后整理技术的进步,使PVA浆料、新型助剂等难以生化降解的有机物大量进入印染废水中,增加了处理难度。由于不同染料、不同助剂、不同织物的染整要求,所以废水中的pH值、CODCr、BOD5、颜色等也各不相同,但其共同的特点是B/C值均较低,一般在0.2左右,可生化性相对较差,因此需要采取措施,使B/C值提高到30%左右或更高些,以利于进行生化处理。 印染废水中的碱减量废水,其CODCr值有的可达10万mg/L以上,pH值12 ,因此必须进行预处理,把碱回收,并投加酸降低pH值,经预处理达到一定要求后,再进入调节池,与其它的印染废水一起进行处理。 印染废水的另一个特点是色度高,有的可高达4000倍以上。所以印染废水处理的重要任务之一就是进行脱色处理,为此需要研究和选用优化设计的工艺、高效脱色菌、高效脱色混凝剂和有利于脱色的处理工艺。印染行业中,PVA浆料和新型助剂的使用,使难生化降解的有机物在废水中含量大量增加。特别是PVA浆料造成的COD含量占印染废水总COD的比例相当大,而水处理用的普通微生物对这部分COD很难降解。因此需要更为优化的工艺设计和经验丰富的调试工程师,以把握工艺设计的关键点,保障工艺的顺利稳定运行。此外,因生产的间断运行,故存在着水量水质的波动;对于大量使用还原染料、硫化染料、冰染料等的废水,其化学絮凝效果相对较差。因此处理工艺要考虑这些因素,要有一定的适应水量、水质负荷变化的能力针对纺织印染废水处理容易起泡沫的问题,我公司研发的高溶氧消泡射流器可以成功解决该问题,不仅氧转移率高充氧效果好而且好氧曝气池不起泡沫,不用维修,一次性解决好氧问题。纺织印染废水深度处理工艺一般选择Fenton处理工艺,或Fenton延伸处理工艺例如紫外Fenton、催化Fenton等处理工艺,但其都存在污泥产量大、pH值调节费用高、加药控制点难以掌握等难题。我公司与高校合作研发的光触催化强氧化反应器/工艺,成功解决了该类难题,可以将COD80100mg/L处理至4050mg/L,100mg/L以下的COD去除率达到50%以上,处理费用不足0.2元/m3。六、蛋白行业蛋白行业的污水处理主要包括大豆蛋白生产废水、豌豆绿豆粉丝生产废水和豆制品生产废水。其废水特点基本相同,废水中不含任何有毒有害物质,氯离子和硫酸根相对较低,主要的污染物就是蛋白残留和高氨氮,废水可生化性强,生化处理相对简单,但关键点的设计、施工和调试存在差异较大,合理的设计十分重要。大豆蛋白行业性生产,主要集中在江北地区,5年前该类废水处理达标较为困难,尤其是废水中高氨氮的处理,当今困扰该行业健康持续发展的是IC厌氧反应器处理负荷较低、颗粒污泥生长困难。虽然IC厌氧反应器的使用给企业带来了沼气发电、沼气燃烧、周围空气环境的改善等诸多利益,但颗粒污泥的不定期补充、处理率的日渐低下,给企业发展造成了重创。该类废水没有毒性、废水生化性好、营养充分,为什么不长颗粒污泥,反而需要不定期的补充呢?针对此类问题,我们在大学研究中心的技术支持下,分析主要的原因是IC反应器的合理化设计是最关键的,其次是预处理工艺的优化设计。针对此类问题,我们自2009年开始着手于研究分析、中试、实际工程的应用等,在2010在实际工程应用中已经初步成功解决了此类问题,2012年开始,可以完全实现大豆蛋白废水IC/EGSB反应器颗粒污泥的生长。豌豆绿豆粉丝生产性行业,大部分主要集中在江北地区,该类废水蛋白含量高,生化性强,B/C均可达到0.5以上,COD浓度相对大豆蛋白生产废水低得多。近年来,该类废水也多采用了IC/EGSB反应器进行厌氧化处理,处理效果良好。同样困扰该类行业的难题也是IC/EGSB反应器需要不定期补充部分颗粒污泥维持良好的运行状态。豆制品类行业性生产较为分散,但规模性较大的企业主要集中在南方,东北地区也是该类生产行业的集散地。该类废水同样生化性较好、无毒害作用。我公司针对该类行业废水的水质特点,与高校强力合作,优化了预处理工艺、改进了IC反应器的布水方式,合理优化设计计算参数,针对研发的旋混布水式IC厌氧反应器在实际工程中得到了应用,并能够促进颗粒污泥的形成,解决了目前市场上IC反应器颗粒污泥生长量与新陈代谢老化量出现严重逆差的问题,相对而言,使得蛋白行业IC反应器内颗粒污泥出现生长趋势。另外,好氧处理工艺经过我公司研发的AOS生物脱氮工艺处理后,使得出水氨氮8mg/L 、COD80mg/L,而且在整个运行过程中不需外加碳源和碱度,在实际工程中同样得到了应用,并根据实际工程中所存在的问题,进行了多次改进,使得好氧处理具有保障性高、动力费用低、处理效果好、操作简单等特点。七、制药废水特点制药工业废水主要包括抗生素生产废水、合成药物生产废水、中成药生产废水以及各类制剂生产过程的洗涤水和冲洗废水四大类。其废水的特点是成分复杂、有机物含量高、毒性大、色度深和含盐量高,特别是生化性很差,且间歇排放,属难处理的工业废水。随着我国医药工业的发展,制药废水已逐渐成为重要的污染源之一,如何处理该类废水是当今环境保护的一个难题。1、水质分类中药废水的水质特点是含有糖类、苷类、有机色素类、蒽醌、鞣质体、生物碱、纤维素、木质素等多种有机物;废水SS高,含泥沙和药渣多,还含有大量的漂浮物; COD浓度变化大,一般在2 0006000mg/L之间,甚至在10011 000 mg/L之间变化;色度高,在500倍左右;水温25-60。化学制药废水的水质特点是废水组成复杂,除含有抗生素残留物、抗生素生产中间体、未反应的原料外,还含有少量合成过程中使用的有机溶剂。COD浓度大,一般在4 00010000 mg/L之间。每吨抗生素平均耗水量在万吨以上,但90%以上是冷却用水,真正在生产工艺中不可避免产生的污染废水仅占5%左右,这部分工艺废水都罐水,洗塔水,树脂再生液及洗涤水,地面冲洗水等,排放严重超标,主要是COD、BOD,其他还有氮、硫、磷、酸、碱、盐。每吨抗生素产生的高浓度有机废水,平均为150200m3,发酵单位低的品种,其废水量成倍增加,这种废水的COD含量平均为15000 mg/L左右,抗生素行业废水排放量约为350万m3左右,造成水环境的严重污染。生物制药厂大多有冷却水排放。一般污染段浓度不大,可直接排放,但最好回用。有些药厂还有酸、碱废水,经简单中和可达标排放。在生物制药废水中,维生素C生产废水有机污染也十分严重,综合废水的COD含量可达为800010000 mg/L,含甲醇、乙醇、甲酸、蛋白质、古龙酸、磷酸盐等物质,废水偏酸性。2、制药废水水质特点生物制药废水一般成分复杂,污染物浓度高,含有大量有毒、有害物质、生物抑制物(包括一定浓度的抗生素)、难降解物质等,带有颜色和气味,悬浮物含量高,易产生泡沫等。2.1 COD浓度高以抗生素废水为例,其中主要为发醉残余基质及营养物、溶媒提取过程的萃余液、经溶媒回收后派出的蒸馏釜残液、离子交换过程排出的吸附废液、水中不溶性抗生素的发酵滤液、染菌倒灌液等。2.2 SS浓度高其中主要为发酵的残余培养基质和发酵产生的微生物丝菌体。如庆大霉素SS为8000 mg/L左右,对厌氧EGSB工艺处理极为不利。2.3存在难生物降解物质和有抑菌作用的抗生素等毒性物质对于抗生素类废水来说,由于发酵中抗生素得率较低(0.1%3%)、分离提取率仅为60%70%,大部分废水中的抗生素残留浓度均较高。2.4硫酸盐浓度高如链霉素废水中的硫酸盐含量为3000 mg/L左右,最高可达5500 mg/L;土霉素为2000 mg/L左右;庆大霉素为4000 mg/L。2.5水质成分复杂中间代谢产物、表面活性剂(破乳剂、消沫剂等)和提取分离中残留的高浓度酸、碱、有机溶剂等化工原料含量高。该类成分易引起pH波动大、色度高和气味重等不利因素,影响厌氧反应器中甲烷菌正常的活动。3、国内制药废水的处理工艺现状制药工业废水通常属于较难处理的高浓度按照医药产品种类区分,我国制药工业主要为生物制药、化学制药和中草药生产。生物制药是采用微生物对各种有机原料进行发酵、过滤、提炼,从而生产各种抗生素、氨基酸及一些药物中间体。化学制药是采用化学反应工艺,将有机原料和无机原料等制成药物中间体及合成药剂。中草药生产是对中草药材进行加工、提取制剂或中成药,生产工艺主要包括原料的前处理和提取制剂。制药工业生产的发展带来了排废的增加,制药工业的“三废”污染危害主要来自原料药生产。由于生产工序繁琐,生产原料复杂,直接造成产品转化率低而“三废”产生量大。药剂生产过程中残余的原料、产品和副产品如果不加妥善处置,将有几十倍乃至几千倍于药物产品的“三废”物质产生,其中尤以废水对环境的污染最为严重。4、制药废水的组分及性质制药工业废水属于较难处理的高浓度有机污水之一,因药物产品不同、生产工艺不同而差异较大。此外,制药厂通常是采用间歇生产,产品的种类变化较大,造成了废水的水质、水量及污染物的种类变化较大。生物制药废水中主要含菌丝体、残余营养物质、代谢产物和有机溶剂等,目前生物制药工艺主要用于生产抗生素。废水主要来自发酵滤液、提取的萃余液、蒸馏釜残液、吸附废液和导管废液等。废水的有机物浓度很高,COD可高达500020000mg/L,BOD可达200010000mg/L,SS浓度则可达到500023000mg/L,TN达到6001000mg/L。废水中的菌丝体、代谢产物等物质属于高浓度有机物和有抑菌作用的抗生素物质,当抗生素浓度大于100mg/L时会抑制好氧菌的生物活性。化学制药的主要生产工艺都是化学反应,原料复杂、反应步骤多造成产品转化率低而原料损失严重。这类废水中含有种类繁多的有毒有害化学物质,如甾体类化合物、硝基类化合物、苯胺类化合物、哌嗪类和氟、汞、铬铜及有机溶剂乙醇、苯、氯仿、石油醚等有机物、金属和废酸碱等污染物。由于合成制药工业的原料较为复杂,一个制药企业的产品种类又往往并非一种,因此合成制药企业的废水所含污染物情况更为复杂。中药生产的洗涤、煮药、提纯分离、蒸发浓缩、制剂等工序中所排出的废水包括清洗废水、分离水、蒸发冷凝水、药液流失水等。废水中主要是中药煎煮出的各种天然生物有机物,如有机酸、蒽醌、木质素、生物碱、单宁、鞣质、蛋白质、糖类、淀粉等。其水质波动性较大,另外水中有时还含有中药制作中使用的酒精等有机溶剂。八、高浓度有机废水高浓度有机废水主要具有以下特点:一是有机物浓度高。COD一般在2000 mg/L以上,有的甚至高达几万乃至几十万mg/L,相对而言,BOD较低,很多废水BOD与COD的比值小于0.3。二是成分复杂。含有毒性物质废水中有机物以芳香族化合物和杂环化合物居多,还多含有硫化物、氮化物、重金属和有毒有机物。三是色度高,有异味。有些废水散发出刺鼻恶臭,给周围环境造成不良影响。四是具有强酸强碱性。高浓度难降解有机废水难于生物处理的原因,本质上是由其特性决定的,除了在处理时的外部环境条件(如温度、p H值等)没有达到生物处理的最佳条件外,还有两个重要的原因,一是由于化合物本身的化学组成和结构,在微生物群落中,没有针对要处理的化合物的酶,使其具有抗降解性;二是在废水中含有对微生物有毒或者能抑制微生物生长的物质(有机物或无机物) ,从而使得有机物不能快速的降解。此类废水在水质、水量等方面具有以下几方面的共同特性:(1)废水所含有机物浓度高几种典型的高浓度有机废水,如焦化废水、制药废水、纺织、印染废水、石油/化工废水等,其主要生产工段的出水COD浓度一般均在30005000mg/ L以上,有的工段出水甚至超过10000 mg/ L ,即使是各工段的混合水,一般也均在2000 mg/ L以上。(2)有机物中的生物难降解物种类多比例高这类有机废水中,往往含有较高浓度的生物难降解物,甚至是生物毒物,且种类较多。如在典型的焦化废水中,除含有较高浓度的氨氮外,还有苯酚、酚的同系物以及萘、蒽、苯并芘等多环类化合物,及氰化物、硫化物、硫氰化物等;而比较典型的抗生素废水,则含有较高浓度的SO2 -4、残留的抗生素及其中间代谢产物、表面活性剂及有机溶媒等。(3)除有机物外,废水含盐浓度较高此类废水往往有较高的含盐量,致使废水处理的难度加大。如典型的抗生素废水,其硫酸盐含量一般均在2000 mg/ L以上,有的甚至高达15000mg/ L。(4)、各生产工段排水的水质、水量随时间的波动性大还以焦化废水为例,一座中等规模的焦化厂,其水量在一天内可由约10 m3/ h变化到40 m3/ h ,废水的COD浓度也可由约1000 mg/ L变化到3000mg/ L以上,甚至更高;而制药废水除水量随生产工序的变化而剧烈变化外, COD浓度更是可由每升几百毫克变化到几万毫克。(5)废水处理方法本身也存在较大问题处理这类废水,多采用生物处理,且以好氧法或好氧法的改进型(如A/ O工艺等)为主,有的也采用厌氧生物处理。从这些工艺在国内外的实际运用情况看,主要存在工艺流程长、外加物(如外加碳源物、调节pH药剂等)量大且费用高等问题,从而导致整体上单位水量造价和单位水量成本均较高。以焦化废水为例,较为理想的处理焦化废水的单位水量成本至少在(人民币) 108元/ m3以上,国外一些公司更是不把处理成本作为第一因素考虑。九、高色度废水随着企业及人们环保意识的增强、国家环保部部门控制力度的进一步加大,废水的色度越来越受到关注,对于色度的去除,我们一般首先考虑色度的成因,再考虑该色度成因对生物处理的影响进行工艺的设计,最终根据自身水质分析脱色的工艺选取。一、色度成因分析根据引起水体色度的物质物理性质,可以将水体颜色分为表色和真色两种。表色是指没有去除水中悬浮物的水体颜色;而真色则是由于水中溶解性物质引起来的,也就是去除水中悬浮物后的颜色。通常我们所提到的色度所指的就是真色。一般引起水体色度升高的原因有可能是有机物,也有可能是金属离子或者是螯合物。1、有机物对色度的贡献通常认为高色度污水来源于染料生产和印染行业,因为染料生产基本原料是苯系、奈系、蒽醌系以及苯胺、硝基苯、酚类等。其实这种认识是片面的,在制药废水、木糖生产废水、色素生产废水、酶制剂生产废水、山梨醇生产废水、造纸废水、部分有机化工废水中,废水都是有色度的,而且其色度的变化随着污水处理单元的变化而变化,比如厌氧出水显深青色,到了好氧处理出水却变成了红色或红褐色等等。这主要与有机物在结构组成上所包含的发色基团和助色基团有关。所谓发色基团是指含有共轭双键或共轭大键,可吸收紫外光以及可见光区域内不同波长的光波而发色的基团。发色基团有可能包括:-C=C-、-C=O、-CHO、-N=O、-NO2、-C=S、-C=N-、-N=N-、芳环和杂芳环等等。所谓助色基团,是指本身吸收波段在紫外区(短波段),若将其接到共轭体系或发色基团上,则可使共轭键或者发色基团的光吸收波段移向长波方向的基团,废水中的发色基有可能包括:-OH、-OR、-NH2、-SH、-Br和-CL等。2、金属离子及螯合物对色度的贡献据很多资料显示,水体里存在的某些过渡金属离子及螯合物对水体色度的产生也有一定的影响。尤其在工业废水中,水质波动性很大,随机性强。很多时候废水中含有Fe(、)、Mn(、)、Cu()等金属离子以及螯合物,而这些过渡金属离子和螯合物对污水的色度都有一定的贡献。二、高色度污水对生物处理工艺的危害1、不易生化高色度污水的排放致使废水的COD浓度增高,至使BOD5/COD值较低,一般为0.20.4,不易生化;且曝气池微生物对多变化的染料及染料中间体难以适应,对微生物产生不良影响。已有报道表明,含偶氮色素的染料废水可以用活性污泥法进行处理,但由于染料的种类不同,有时会发生妨碍活性污泥中微生物的呼吸现象。2、毒性很大染料生产一般是芳香族化合物苯环上的氢被卤素、硝基、胺基取代后生成芳香族卤素化合物、芳香族硝基化合物、芳香族胺类化合物等,毒性都较大,如甲苯、硝基苯、苯胺等。染料废水还经常含有重金属毒物:铜、铅、锌、铬、汞、氰离子等。据资料表明,一般活性污泥法和常规的生物反应器都难以将苯胺类化合物生物降解,而且苯胺类化合物还是其它化合物生物降解的抑制剂,表现出抑制作用。3、对曝气池原生动物也有影响在正常工艺运行状态下活性污泥系统中,钟虫属、累枝虫属、有肋盾纤虫属等占有很大优势,此时活性污泥发育正常,沉降性能及生物活性良好,出水水质较高,处理效果较好。据资料显示,当高色度废水流入曝气池时,原生动物的反应最敏感,其中最容易受影响的是盾纤虫属。三、污水色度去除的新技术有机化合物成分复杂,所以对有机化合物的分析,除了一般鉴定步骤外,还需配合进行元素和官能团的定量分析,以及进行红外光谱、紫外光谱、核磁共振、质谱等仪器分析。去除污水的色度的机理,根据色度形成机理的不同可以分为两类:(1)对由有机物引起色度的脱色,其主要机理就是通过各种途径打开其发色集团的共轭双键或共轭大键而脱色;(2)对由金属离子或螯合物引起的色度的脱色,其主要机理就是去除金属离子或螯合物。目前污水脱色的新方法、新技术简要介绍如下:1、吸附脱色法很多资料显示,活性炭能有效去除废水中的活性染料、碱性染料、偶氮染料。活性炭在吸附水溶性色度时吸附率高,但不能吸附悬浮固体和不溶性色度。而且,再生费用昂贵,一般用于量少、浓度较低的染料废水处理或深度处理。2、絮凝法脱色絮凝理论认为:水中呈胶体状态存在的粒子,其表面带有电荷,粒子越细,其表面积越大,表面电荷的影响越强烈。静电斥力作用难以使粒子凝集,加入絮凝剂后,可减少胶体粒子表面电荷,减弱相同粒子间的斥力,粒子在碰撞时,形成絮凝,从而达到脱色的目的。因而,被广泛的用于废水处理。絮凝法的缺点是絮凝剂用量大,处理废水是会产生大量不易脱水的污泥造成二次污染。3、氧化还原法氧化法是通过氧化剂,破坏发色基或攻击染料分子结构上的弱点,将发色基变为可降解结构。但氧化剂用量大,经济上不可行。还原法主要是废料铁屑。铁屑浸入废水后形成无数微小原电池,电极反应产物为Fe2+、H+、OH-,均具有较高的化学活性,可有效地脱除废水中的显色分子。铁屑用于处理高色度废水,不仅成本低廉、操作简单、而且能够获得以废治废的效果。主要缺点是还原降解后生产的简单分子具有毒性,必须经过二次处理,费用增大。4、离子交换脱色法一种羟基丙基纤维素具有比纤维素本省对活性染料、直接染料、络合还原染料更大的亲和力,对除碱性染料外的其它高色度废水的脱色效果优于活性炭。但一般离子交换法仅对某些显色基团具有吸附作用,不适合大规模推广使用。5、超滤脱色法目前,实现超滤的方法有:超滤膜过滤、锰砂过滤、新型复合过滤材料过滤等。试验证明超滤膜对COD的去除率为53%以上,对浊度的去除率为100%,对色度的去除率为92%以上;锰砂过滤对色度的去除率达到50%,对污水色度的去除效果明显;新型复合过滤材料含有珊瑚砂和加到珊瑚砂表面的活性炭。活性炭粒径为0.05m。可用于去除污水的色度。该方法可用于去除各种染料和添加剂,但分离染料混合物困难、工艺复杂、费用大。6、生化法脱色生化法是利用水中的微生物降解水中的有机物来净化水质达到脱色的目的。目前多采用活性污泥、接触氧化、生物转盘等方法处理印染废水。微生物对染料的分解具有选择性,有不少染料不能被生物降解,所以利用生化法处理印染废水的脱色效果较差。7、电化学法脱色电化学处理方法就是采用溶解性或不溶性极板做电极,通入直流电,通过电解槽内发生的电化学氧化还原反应来达到脱色目的。其优点有:(1)普遍性,脱色效率快,应用广;(2)操作管理方便;(3)它是许多脱色方法的综合,处理过程中污泥和浮渣较少;(4)处理费用较低;8、纳米技术脱色用纳米尺寸的TiO2作为高色度污水处理的光催化剂时,其主要吸收激发波长为385nm(紫外波长)以下的光进行氧化还原反应,染料类化合物作为一种高效光敏化剂能将TiO2吸收光的范围由紫外光延伸至可见光,这不但有效提高了光催化剂的催化活性,也能直接利用太阳光处理废水,降解脱色,达到废水处理的目的。9、联用技术脱色以上两种或多钟脱色技术的联用,比如:高压脉冲放电臭氧氧化处理活性艳红K2BP废水;化学生化组合法深度处理印染废水;活性炭臭氧处理印染废水等。试验证明,多种脱色技术的联用可以集中多种脱色技术的优点,对水体色度的去除具有更高的处理效率。十、高氨氮废水高氨氮废水生物处理技术领域重大突破及在实际工程中的应用随着我国工业迅速发展壮大,由此而产生的高氨氮废水也成为行业发展制约因素之一;据报道,2001年我国海域发生赤潮高达77次,氨氮是污染的重要原因之一,特别是高浓度氨氮废水造成的污染。因此,经济有效的控制高浓度污染也成为当前环保工作者研究的重要课题,得到了业内人士的高度重视。氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上pH在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,pH在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。传统和新开发的脱氮工艺有A/O、两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、厌氧氨氧化、全程自养脱氮、SBR脱氮工艺、超声吹脱处理氨氮法方法等。其中短程硝化反硝化和厌氧氨氧化是近年来新型氨氮处理工艺。生物硝化反硝化是目前应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:节省25%氧供应量,降低能耗;减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;缩短反应历程,节省50%的反硝化池容积;降低污泥产量,硝化过程可少产污泥33%35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。厌氧氨氧化(ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性H,还原性H被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.81.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。上述三种脱氮工艺是近年来主要流行的脱氮新型工艺,其中厌氧氨氧化和全程自养脱氮仍处于实验室研究状态,国内外无一真正应用于实际工程中。近年来短程硝化反硝化在工程得到了实际的应用与发展,但也存在其缺陷,例如,某一淀粉厂应用了该工艺,厌氧出水即好氧进水COD为700mg/L左右、氨氮为260mg/L左右,经过短程硝化反硝化好氧处理后,氨氮为20mg/L左右、COD为150mg/L,氨氮和COD难以再进一步降低,核算其好氧污泥负荷,仅为正常活性污泥法的2/3,如果排入城市污水处理厂的话,该指标是没有问题的,但如果直排是不达标的。此类案例不止一处,如果再建二级活性污泥法,其氨氮可以降至5mg/L左右、COD为80mg/L左右。单纯的短程硝化反硝化是难以处理达标到一级排放标准的。针对传统脱氮工艺的不足之处,同时结合短程硝化反硝化、全程自养脱氮、厌氧氨氧化等新型工艺理念,在A/O脱氮工艺的基础上,我公司与大学联手研发的AOS新型脱氮工艺,在多种水质实际工程应用中得到了应用,并根据实际工程中存在的缺陷进行了改进。AOS脱氮工艺是在A/O脱氮工艺基础之上,结合短程硝化反硝化的理论基础改进而来的一种新型脱氮处理工艺。AOS脱氮工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.5mg/L,O段DO=24mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。AOS生物脱氮工艺具有以下优点:1、效率高,基建投资和运行费用省;2、不需要外加碳源和碱度,运行费用低;3、运行、调控管理方便;4、启动、事故救援灵活,应急处理机动;5、广泛适用于各种高氮含量污水,如味精废水、大豆蛋白污水、淀粉污水、畜禽污水、化工污水等。对于处理皮革及化工、有机酸、酶制剂、制药类废水,常用的A/O工艺与AOS工艺的比较如下表所示。A/O工艺与AOS工艺的比较项 目A/O工艺AOS工艺抗冲击能力弱强外加碳源需要(传统工艺需投加甲醇)不需要外加碱度需要必要时需要出水效果当污水浓度降低到一定的程度后,不容易再进行处理系统内存根据COD、氨氮浓度梯度的变化,存在适应多种浓度的菌种,能针对不同浓度的污水,分别进行处理操作难易不容易操作操作方便从上表中的比较中可以看出,相对于常用的A/O工艺,AOS工艺具有节省药剂、操作简单、抗冲击能力强的优点,而且AOS工艺比A/O工艺更容易达到理想的出水效果。十一、淀粉氨基酸行业1、淀粉类生产废水水质特性淀粉生产大约有80%是以玉米为原料,其余以薯类、小麦、大麦、燕麦以及其他富含淀粉的植物块根等为原料。原料中除含有淀粉以外还含有其他的多种成分 蛋白质、纤维素、机盐等口淀粉 生产 由原料处理、浸泡、粉碎、过筛、分离淀粉、洗涤

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论