信号教学课件(华中科技大学)cha_第1页
信号教学课件(华中科技大学)cha_第2页
信号教学课件(华中科技大学)cha_第3页
信号教学课件(华中科技大学)cha_第4页
信号教学课件(华中科技大学)cha_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

CHAPTER5THEDISCRETE TIMEFOURIERTRANSFORM5 0INTRODUCTION Discrete timeFouriertransformandinverseFouriertransform ApplicationofDTFTindiscrete timeLTIsystems Similaritiesanddifferencesbetweencontinuous timeanddiscrete timeFouriertransforms 5 1REPRESENTATIONOFNONPERIODICSIGNALS THEDISCRETE TIMEFOURIERTRANSFORM As Definingafunction Thus Consequently As Differencesbetweenthecontinuous timeanddiscrete timeFouriertransformare periodicityofthediscrete timetransformandthefiniteintervalofintegrationinthesynthesisequation Indiscretetime Lowfrequenciesarethevaluesof nearevenmultipleof highfrequenciesarethosevaluesof nearoddmultiplesof Example5 1Considerthesignal 1 0 0 1 Example5 2Considerthesignal for0 1 Example5 3Considertherectangularpulse ConvergenceIssuesoftheDiscrete TimeFourierTransform Ifx n isaninfinitedurationsignal wemustconsiderthequestionofconvergenceoftheinfinitesummationintheanalysisequation Theanalysisequationwillconvergeifx n isabsolutelysummable thatis Incontrasttothesituationfortheanalysisequation therearegenerallynoconvergenceissuesassociatedwiththesynthesisequation Considertheunitsamplex n n Approximating n byanintegralofcomplexexponentialswithfrequenciestakenovertheinterval W i e ThisisplottedinthefollowingFigureforseveralvaluesofW Approximationtotheunitsampleusingcomplexexponentialswithfrequencies W a W 4 b W 3 8 c W 2 d W 3 4 e W 7 8 f W NotethatforW 5 2THEFOURIERTRANSFORMFORPERIODICSIGNALS FirstconsidertheFouriertransformofthesequence Tocheckthevalidityofthisexpression Nowconsideranarbitraryperiodicsequencex n withperiodNandwiththeFourierseriesrepresentation ApplyingtheFouriertransformtobothsides weobtain Thus theFouriertransformofaperiodicsignalcanbedirectlyconstructedfromitsFouriercoefficients Example5 4Considertheperiodicsignal Thatis Example5 5Considertheperiodicsampletrain ThenwecanrepresenttheFouriertransformofthesignalas Choosingtheintervalofsummationas0 n N 1 5 3PROPERTIESOFTHEDISCRETE TIMEFOURIERTRANSFORM 5 3 1PeriodicityoftheDiscrete TimeFourierTransform 5 3 2LinearityoftheFourierTransform then 5 3 3TimeShiftingandFrequencyShifting If then and 5 3 4ConjugationandConjugateSymmetry If then ifx n isrealvalued 5 3 5DifferencingandAccumulation First difference Accumulation 5 3 6TimeReversal 5 3 7TimeExpansion If then 5 3 8DifferentiationinFrequency 5 3 9Parseval sRelation Example5 7Considertheunitstepsequenceu n Since and Thus Example5 8Considerthesequencex n whichisillustratedinthefollowingfigure 5 4THECONVOLUTIONPROPERTY If then TheconvolutionpropertyrepresentsthattheFouriertransformoftheresponseofanLTIsystemtoanonperiodicinputaresimplytheFouriertransformoftheinputmultipliedbythesystem sfrequencyresponseevaluatedatthecorrespondingfrequencies TheconvolutionpropertymapstheconvolutionoperationoftwotimesignalstothemultiplicationoperationoftheirFouriertransforms ThefrequencyresponsecapturesthechangeincomplexamplitudeoftheFouriertransformoftheinputateachfrequency Example5 8ConsideranLTIsystemwithsampleresponse Thefrequencyresponseis Thus foranyinputx n theFouriertransformoftheoutputis Consequently Example5 9ConsideranLTIsystemwithsampleresponse Theinputtothissystemis Theoutputy n If Thus If Example5 10Considerthesystem Whatisthefrequencyresponseoftheoverallsystem Whereisanideallow passfilterwithcutofffrequency 4andunitygaininthepassband Thekeystep Thus Since Consequently Fromtheconvolutionproperty theoverallsystemhasthefrequencyresponse Stopband 5 5THEMULTIPLICATIONPROPERTY ConsidertheFouriertransformofy n x1 n x2 n wheretheFouriertransformsofx1 n andx2 n areknown since Example5 11FindtheFouriertransformofasignalx n whichistheproductofx1 n andx2 n where Fromthemultiplicationproperty 5 6DUALITY SUMMARYOFFOURIERSERIESANDTRANSFORMEXPRESSIONS Forthediscrete timeFourierseries dualitybetweenthesequencex n inthetime domainanditsFourierseriescoefficientf k is Forthecontinuous timeFouriertransform dualitybetweenthesignalx t inthetime domainanditsFouriertransformX j is Dualityimpliesthateverypropertyhasadual Thereisalsoadualitybetweenthediscrete timeFouriertransformandthecontinuous timeFourierseries Example5 12Determinethediscrete timeFouriertransformofthesequence SincetheFouriertransformofx n isperiodicwithperiod2 andwiththeformofsquarewave soweconsidersignalg t whichisaperiodicsquarewavewithperiod2 andwith theFourierseriescoefficientsofg t are SeeTable4 2 LetT1 2 thenwehaveak x k takingakandg t intotheanalysisequation Renamingkasnandtas wehave Replacingnby n weobtain Thus 5 7SYSTEMSCHARACTERIZEDBYLINEARCONSTANT COEFFICIENTDIFFERENCEEQUATIONS isaratioofpolynomialsinthevariable coefficientsofthenumeratorpolynomial coefficientsappearingontherightsideofthedifferenceequation coefficientsofthedenominatorpolynomial coefficientsappearingontheleftsideofthedifferenceequation Example5 13ConsideracausalLTIsystemthatischaracterizedbythedifferenceequations andlettheinputtothissystembe Determinetheoutputy n Theformofthepartial fractionexpansioninthiscaseis Sothat Consequently 5 8DISCRETE TIMEFREQUENCY SELECTIVEFILTER 5 9SAMPLINGOFDISCRETE TIMESIGNALS Impulse trainsampling spectrumofsampledsignalwith s 2 M Indiscrete timecase theresultofsamplingtheoremalsoexist Example5 14Considerasequencex n whoseFouriertransform Determinethelowestrateatwhichx n maybesampledwithoutaliasing Since thecorrespondingsamplingfrequencyis2 4 2 Sothat Thus Fromthesamplingtheorem weknow 5 10SUMMARY TheFouriertransformforperiodicdiscrete timesignals TheFouriertransformforaperiodicdiscrete timesignals Convenientwa

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论