平均数问题公式.doc_第1页
平均数问题公式.doc_第2页
平均数问题公式.doc_第3页
平均数问题公式.doc_第4页
平均数问题公式.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【平均数问题公式】总数量总份数=平均数。 【一般行程问题公式】平均速度时间=路程 路程时间=平均速度; 路程平均速度=时间。【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。这两种题,都可用下面的公式解答:(速度和)相遇(离)时间=相遇(离)路程;相遇(离)路程(速度和)=相遇(离)时间;相遇(离)路程相遇(离)时间=速度和。【同向行程问题公式】追及(拉开)路程(速度差)=追及(拉开)时间;追及(拉开)路程追及(拉开)时间=速度差;(速度差)追及(拉开)时间=追及(拉开)路程。【列车过桥问题公式】(桥长+列车长)速度=过桥时间;(桥长+列车长)过桥时间=速度;速度过桥时间=桥、车长度之和。【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)2=船速;(顺水速度-逆水速度)2=水速。(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。【工程问题公式】(1)一般公式:工效工时=工作总量;工作总量工时=工效;工作总量工效=工时。(2)用假设工作总量为“1”的方法解工程问题的公式:1工作时间=单位时间内完成工作总量的几分之几;1单位时间能完成的几分之几=工作时间。(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5。特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。)【盈亏问题公式】(1)一次有余(盈),一次不够(亏),可用公式:(盈+亏)(两次每人分配数的差)=人数。例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友和多少个桃子?”解(7+9)(10-8)=162=8(个)人数108-9=80-9=71(个)桃子或88+7=64+7=71(个)(答略)(2)两次都有余(盈),可用公式:(大盈-小盈)(两次每人分配数的差)=人数。例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?”解(680-200)(50-45)=4805=96(人)4596+680=5000(发)或5096+200=5000(发)(答略)(3)两次都不够(亏),可用公式:(大亏-小亏)(两次每人分配数的差)=人数。例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生和多少本本子?”解(90-8)(10-8)=822=41(人)1041-90=320(本)(答略)(4)一次不够(亏),另一次刚好分完,可用公式:亏(两次每人分配数的差)=人数。(5)一次有余(盈),另一次刚好分完,可用公式:盈(两次每人分配数的差)=人数。【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-236)(4-2)=14(只)兔;36-14=22(只)鸡。解二(436-100)(4-2)=22(只鸡;36-22=14(只)兔。(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)1000-1852519=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”解(52+44)(4+2)+(52-44)(4-2)2=202=10(只)鸡(52+44)(4+2)-(52-44)(4-2)2=122=6(只)兔(答略)【植树问题公式】(1)不封闭线路的植树问题:间隔数+1=棵数;(两端植树)路长间隔长+1=棵数。或 间隔数-1=棵数;(两端不植)路长间隔长-1=棵数;路长间隔数=每个间隔长;每个间隔长间隔数=路长。(2)封闭线路的植树问题:路长间隔数=棵数;路长间隔数=路长棵数=每个间隔长;每个间隔长间隔数=每个间隔长棵数=路长。(3)平面植树问题:占地总面积每棵占地面积=棵数【求分率、百分率问题的公式】_sina_#8221_word_冉鲜标准数=比较数的对应分(百分)率;增长数标准数=增长率;减少数标准数=减少率。或者是两数差较小数=多几(百)分之几(增);两数差较大数=少几(百)分之几(减)。【增减分(百分)率互求公式】增长率(1+增长率)=减少率;减少率(1-减少率)=增长率。比甲丘面积少几分之几?”解 这是根据增长率求减少率的应用题。按公式,可解答为百分之几?”解 这是由减少率求增长率的应用题,依据公式,可解答为【求比较数应用题公式】_sina_#8221_word_曜际分(百分)率=与分率对应的比较数;_sina_#8221_word_曜际增长率=增长数;_sina_#8221_word_曜际减少率=减少数;_sina_#8221_word_曜际(两分率之和)=两个数之和;_sina_#8221_word_曜际(两分率之差)=两个数之差。【求标准数应用题公式】_sina_#8221_word_冉鲜与比较数对应的分(百分)率=标准数;增长数增长率=标准数;减少数减少率=标准数;两数和两率和=标准数;两数差两率差=标准数;【方阵问题公式】(1)实心方阵:(外层每边人数)2=总人数。(2)空心方阵:(最外层每边人数)2-(最外层每边人数-2层数)2=中空方阵的人数。或者是(最外层每边人数-层数)层数4=中空方阵的人数。总人数4层数+层数=外层每边人数。例如,有一个3层的中空方阵,最外层有10人,问全阵有多少人?解一 先看作实心方阵,则总人数有1010=100(人)再算空心部分的方阵人数。从外往里,每进一层,每边人数少2,则进到第四层,每边人数是10-23=4(人)所以,空心部分方阵人数有44=16(人)故这个空心方阵的人数是100-16=84(人)解二 直接运用公式。根据空心方阵总人数公式得(10-3)34=84(人)【利率问题公式】利率问题的类型较多,现就常见的单利、复利问题,介绍其计算公式如下。(1)单利问题:_sina_#8221_word_窘利率时期=利息;_sina_#8221_word_窘(1+利率时期)=本利和;_sina_#8221_word_纠(1+利率时期)=本金。年利率12=月利率;月利率12=年利率。(2)复利问题:_sina_#8221_word_窘(1+利率)存期期数=本利和。例如,“某人存款2400元,存期3年,月利率为102(即月利1分零2毫),三年到期后,本利和共是多少元?”解 (1)用月利率求。3年=12月3=36个月 2400(1+10236)=240013672=328128(元)(2)用年利率求。先把月利率变成年利率:10212=1224再求本利和:2400(1+12243)=240013672=328128(元)(答略)(复利率问题例略)鸡兔同笼问题是一种古老的数学问题,它本来是专门研究鸡兔混杂时,头、足及各有多少只的数量关系问题。人们常常用假设的方法来解答这类问题。但我们如果对鸡兔赋予新的生命,也就会得到异想不到的解法。例: 今有鸡兔共50 只,140只脚,问鸡兔各多少只?分析与解:方法(一)让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即70只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从70里减去头数50,剩下来的就是兔的头数7050=20只,鸡有5020=30只。金鸡独立,兔子站起想得巧!方法(二)让每只兔子又长出一个头来,然后将它劈开,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有1402=70只鸡兔,7050=20只,这就是兔子的数目,(因为每只兔子变为两只半兔,只数增加1只),当然鸡就有5020=30只。把兔“劈开”成“半兔”想得奇!方法(三)把每只鸡的两个翅膀也当作脚,那么每只鸡就有4只脚,与兔的脚数相同,则鸡兔共有脚504=200只,多了200140=60只脚,这就是鸡的翅膀数,所以鸡有602=30只,兔有5030=20只。把鸡翅膀当作脚想得妙!方法(四)让每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是140502=40条,因此兔的只数有402=20只,进而知道鸡有30只。鸡兔具有“特异功能”想得更奇妙!一、 相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。二、不同点1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数 。众数:在一组数据中出现次数最多的数叫做这组数据的众数。2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。众数:一组数据中出现次数最多的那个数,不必计算就可求出。3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。众 数:是一组数据中的原数据 ,它是真实存在的。5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。众数:反映了出现次数最多的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论