




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Tue Sep 18 Intro 1: Computing, statistics, Perl, MathematicaTue Sep 25 Intro 2: Biology, comparative genomics, models & evidence, applications Tue Oct 02 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databasesTue Oct 09 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMarkovModelsTue Oct 16 RNA 1: Microarrays, library sequencing & quantitation concepts Tue Oct 23 RNA 2: Clustering by gene or condition, DNA/RNA motifs.Tue Oct 30 Protein 1: 3D structural genomics, homology, dynamics, function & drug designTue Nov 06 Protein 2: Mass spectrometry, modifications, quantitation of interactionsTue Nov 13 Network 1: Metabolic kinetic & flux balance optimization methodsTue Nov 20 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-netsTue Nov 27 Network 3: Cellular, developmental, social, ecological & commercial modelsTue Dec 04 Project presentationsTue Dec 11 Project PresentationsTue Jan 08 Project PresentationsTue Jan 15 Project Presentations,Bio 101: Genomics & Computational Biology,DNA1: Last weeks take-home lessons,Types of mutantsMutation, drift, selection Binomial & exponential dx/dt = kxAssociation studies c2 statisticLinked & causative allelesAlleles, Haplotypes, genotypesComputing the first genome, the second . New technologiesRandom and systematic errors,DNA2: Todays story and goals,Motivation and connection to DNA1Comparing types of alignments & algorithms Dynamic programming Multi-sequence alignmentSpace-time-accuracy tradeoffsFinding genes - motif profilesHidden Markov Model for CpG Islands,DNA 2,figure,Applications of Dynamic Programming,To sequence analysisShotgun sequence assemblyMultiple alignmentsDispersed & tandem repeatsBird song alignmentsGene Expression time-warpingThrough HMMsRNA gene search & structure predictionDistant protein homologiesSpeech recognition,Alignments & Scores,Global (e.g. haplotype) ACCACACA :xx:x: ACACCATAScore= 5(+1) + 3(-1) = 2,Suffix (shotgun assembly) ACCACACA : ACACCATAScore= 3(+1) =3,Local (motif) ACCACACA :ACACCATAScore= 4(+1) = 4,Increasingly complex (accurate) searches,Exact (StringSearch) CGCGRegular expression (PrositeSearch) CGN0-9CG = CGAACG,Substitution matrix (BlastN) CGCG = CACG Profile matrix (PSI-blast) CGc(g/a) = CACG,Gaps (Gap-Blast) CGCG = CGAACGDynamic Programming (NW, SM) CGCG = CAGACG,Hidden Markov Models (HMMER),WU,Hardness of (multi-) sequence alignment,Align 2 sequences of length N allowing gaps. ACCAC-ACA ACCACACA :x:x:x: :xxxxxx: AC-ACCATA , A-CACCATA , etc. 2N gap positions, gap lengths of 0 to N each: A nave algorithm might scale by O(N2N).For N= 3x109 this is rather large. Now, what about k2 sequences? or rearrangements other than gaps?,Separate Training set and Testing setsNeed databases of non-redundant sets.Need evaluation criteria (programs)Sensistivity and Specificity (false negatives & positives)sensitivity (true_predicted/true) specificity (true_predicted/all_predicted)Where do training sets come from?More expensive experiments: crystallography, genetics, biochemistry,Testing search & classification algorithms,Pearson WR Protein Sci 1995 Jun;4(6):1145-60 Comparison of methods for searching protein sequence databases. Methods Enzymol 1996;266:227-58 Effective protein sequence comparison.Algorithm: FASTA, Blastp, BlitzSubstitution matrix:PAM120, PAM250, BLOSUM50, BLOSUM62Database: PIR, SWISS-PROT, GenPept,Comparisons of homology scores,Switch to protein searches when possible,M,Adjacent mRNA codons,F,3 uac 5. aug,3aag uuu .,A Multiple Alignment of Immunoglobulins,Scoring matrix based on large set of distantly related blocks: Blosum62,Scoring Functions and Alignments,Scoring function:(match) = +1; (mismatch) = -1; (indel) = -2;(other) = 0.Alignment score: sum of columns.Optimal alignment: maximum score., substitution matrix,Calculating Alignment Scores,DNA2: Todays story and goals,Motivation and connection to DNA1Comparing types of alignments & algorithms Dynamic programming Multi-sequence alignmentSpace-time-accuracy tradeoffsFinding genes - motif profilesHidden Markov Model for CpG Islands,What is dynamic programming?,A dynamic programming algorithm solves every subsubproblem just once and then saves its answer in a table, avoiding the work of recomputing the answer every time the subsubproblem is encountered.- Cormen et al. Introduction to Algorithms, The MIT Press.,Recursion of Optimal Global Alignments,Recursion of Optimal Local Alignments,Computing Row-by-Row,min = -1099,Traceback Optimal Global Alignment,Local and Global Alignments,Time and Space Complexity of Computing Alignments,Space & Time Considerations,Comparing two one-megabase genomes.Space:An entry: 4 bytes;Table: 4 * 106 * 106 = 4 Terabytes memory (one row at a time)Time:1000 MHz CPU: 1M entries/second;1012 entries: 1M seconds = 10 days.,Time & Space Improvement for w-band Global Alignments,Two sequences differ by at most w bps (w logP(N) - logP(M) Example, say a/b hydrolase fold is rare in the database, about 10 in 10,000,000. The threshold is 20 bits. If considering 0.05 as a significant level, then the threshold is 20+4.4 = 24.4 bits.,C rare due to lack of uracil glycosylase (cytidine deamination)TT rare due to lack of UV repair enzymes. CG rare due to 5methylCG to TG transitions (cytidine deamination)AGG rare due to low abundance of the corresponding Arg-tRNA.CTAG rare in bacteria due to error-prone repair of CTAGG to C*CAGG.AAAA excess due to polyA pseudogenes and/or polymerase slippage.AmAcid Codon Number /1000 Fraction Arg AGG 3363.00 1.93 0.03Arg AGA 5345.00 3.07 0.06Arg CGG 10558.00 6.06 0.11Arg CGA 6853.00 3.94 0.07Arg CGT 34601.00 19.87 0.36Arg CGC 36362.00 20.88 0.37ftp:/sanger.otago.ac.nz/pub/Transterm/Data/codons/bct/Esccol.cod,Plausible sources of mono, di, tri, & tetra- nucleotide biases,C+,A+,G+,T+,P(G+|C+) ,P(A+|A+),CpG Island + in a ocean of - First order Markov Model,MM=16, HMM= 64
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 木材回收利用创新创业项目商业计划书
- 物业智能巡检任务管理系统创新创业项目商业计划书
- 大连中考试卷物理及答案
- 2025年医学三基考试(康复科)仿真试题及答案
- 2025年人工智能技术与应用考试试卷及答案
- 2025年药管和法规试题及答案
- 护理师相关知识题库及答案解析
- 初三数学二次函数单元测试试卷及答案
- 护理鼻饲考题题库及答案解析
- 安全培训师待遇课件
- 骑手配送食品安全培训课件
- 2025政治理论时政热点知识试题库附完整答案
- 新华字典第12版电子版
- 健康教育学-健康传播
- 常见“肩痛”诊断、鉴别诊断与治疗
- 冷水滩事业编招聘2022年考试《公共基础知识》真题及答案解析【完整word版】
- GB/T 4892-2008硬质直方体运输包装尺寸系列
- 插件基础知识培训(电子)课件
- 2016 年全国中学生天文奥林匹克竞赛预赛试卷
- 2022加油站安全生产责任制考核台帐
- 机器视觉技术及应用全套课件完整版电子教案最新板
评论
0/150
提交评论