




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Tue Sep 18 Intro 1: Computing, statistics, Perl, MathematicaTue Sep 25 Intro 2: Biology, comparative genomics, models & evidence, applications Tue Oct 02 DNA 1: Polymorphisms, populations, statistics, pharmacogenomics, databasesTue Oct 09 DNA 2: Dynamic programming, Blast, multi-alignment, HiddenMarkovModelsTue Oct 16 RNA 1: Microarrays, library sequencing & quantitation concepts Tue Oct 23 RNA 2: Clustering by gene or condition, DNA/RNA motifs.Tue Oct 30 Protein 1: 3D structural genomics, homology, dynamics, function & drug designTue Nov 06 Protein 2: Mass spectrometry, modifications, quantitation of interactionsTue Nov 13 Network 1: Metabolic kinetic & flux balance optimization methodsTue Nov 20 Network 2: Molecular computing, self-assembly, genetic algorithms, neural-netsTue Nov 27 Network 3: Cellular, developmental, social, ecological & commercial modelsTue Dec 04 Project presentationsTue Dec 11 Project PresentationsTue Jan 08 Project PresentationsTue Jan 15 Project Presentations,Bio 101: Genomics & Computational Biology,DNA1: Last weeks take-home lessons,Types of mutantsMutation, drift, selection Binomial & exponential dx/dt = kxAssociation studies c2 statisticLinked & causative allelesAlleles, Haplotypes, genotypesComputing the first genome, the second . New technologiesRandom and systematic errors,DNA2: Todays story and goals,Motivation and connection to DNA1Comparing types of alignments & algorithms Dynamic programming Multi-sequence alignmentSpace-time-accuracy tradeoffsFinding genes - motif profilesHidden Markov Model for CpG Islands,DNA 2,figure,Applications of Dynamic Programming,To sequence analysisShotgun sequence assemblyMultiple alignmentsDispersed & tandem repeatsBird song alignmentsGene Expression time-warpingThrough HMMsRNA gene search & structure predictionDistant protein homologiesSpeech recognition,Alignments & Scores,Global (e.g. haplotype) ACCACACA :xx:x: ACACCATAScore= 5(+1) + 3(-1) = 2,Suffix (shotgun assembly) ACCACACA : ACACCATAScore= 3(+1) =3,Local (motif) ACCACACA :ACACCATAScore= 4(+1) = 4,Increasingly complex (accurate) searches,Exact (StringSearch) CGCGRegular expression (PrositeSearch) CGN0-9CG = CGAACG,Substitution matrix (BlastN) CGCG = CACG Profile matrix (PSI-blast) CGc(g/a) = CACG,Gaps (Gap-Blast) CGCG = CGAACGDynamic Programming (NW, SM) CGCG = CAGACG,Hidden Markov Models (HMMER),WU,Hardness of (multi-) sequence alignment,Align 2 sequences of length N allowing gaps. ACCAC-ACA ACCACACA :x:x:x: :xxxxxx: AC-ACCATA , A-CACCATA , etc. 2N gap positions, gap lengths of 0 to N each: A nave algorithm might scale by O(N2N).For N= 3x109 this is rather large. Now, what about k2 sequences? or rearrangements other than gaps?,Separate Training set and Testing setsNeed databases of non-redundant sets.Need evaluation criteria (programs)Sensistivity and Specificity (false negatives & positives)sensitivity (true_predicted/true) specificity (true_predicted/all_predicted)Where do training sets come from?More expensive experiments: crystallography, genetics, biochemistry,Testing search & classification algorithms,Pearson WR Protein Sci 1995 Jun;4(6):1145-60 Comparison of methods for searching protein sequence databases. Methods Enzymol 1996;266:227-58 Effective protein sequence comparison.Algorithm: FASTA, Blastp, BlitzSubstitution matrix:PAM120, PAM250, BLOSUM50, BLOSUM62Database: PIR, SWISS-PROT, GenPept,Comparisons of homology scores,Switch to protein searches when possible,M,Adjacent mRNA codons,F,3 uac 5. aug,3aag uuu .,A Multiple Alignment of Immunoglobulins,Scoring matrix based on large set of distantly related blocks: Blosum62,Scoring Functions and Alignments,Scoring function:(match) = +1; (mismatch) = -1; (indel) = -2;(other) = 0.Alignment score: sum of columns.Optimal alignment: maximum score., substitution matrix,Calculating Alignment Scores,DNA2: Todays story and goals,Motivation and connection to DNA1Comparing types of alignments & algorithms Dynamic programming Multi-sequence alignmentSpace-time-accuracy tradeoffsFinding genes - motif profilesHidden Markov Model for CpG Islands,What is dynamic programming?,A dynamic programming algorithm solves every subsubproblem just once and then saves its answer in a table, avoiding the work of recomputing the answer every time the subsubproblem is encountered.- Cormen et al. Introduction to Algorithms, The MIT Press.,Recursion of Optimal Global Alignments,Recursion of Optimal Local Alignments,Computing Row-by-Row,min = -1099,Traceback Optimal Global Alignment,Local and Global Alignments,Time and Space Complexity of Computing Alignments,Space & Time Considerations,Comparing two one-megabase genomes.Space:An entry: 4 bytes;Table: 4 * 106 * 106 = 4 Terabytes memory (one row at a time)Time:1000 MHz CPU: 1M entries/second;1012 entries: 1M seconds = 10 days.,Time & Space Improvement for w-band Global Alignments,Two sequences differ by at most w bps (w logP(N) - logP(M) Example, say a/b hydrolase fold is rare in the database, about 10 in 10,000,000. The threshold is 20 bits. If considering 0.05 as a significant level, then the threshold is 20+4.4 = 24.4 bits.,C rare due to lack of uracil glycosylase (cytidine deamination)TT rare due to lack of UV repair enzymes. CG rare due to 5methylCG to TG transitions (cytidine deamination)AGG rare due to low abundance of the corresponding Arg-tRNA.CTAG rare in bacteria due to error-prone repair of CTAGG to C*CAGG.AAAA excess due to polyA pseudogenes and/or polymerase slippage.AmAcid Codon Number /1000 Fraction Arg AGG 3363.00 1.93 0.03Arg AGA 5345.00 3.07 0.06Arg CGG 10558.00 6.06 0.11Arg CGA 6853.00 3.94 0.07Arg CGT 34601.00 19.87 0.36Arg CGC 36362.00 20.88 0.37ftp:/sanger.otago.ac.nz/pub/Transterm/Data/codons/bct/Esccol.cod,Plausible sources of mono, di, tri, & tetra- nucleotide biases,C+,A+,G+,T+,P(G+|C+) ,P(A+|A+),CpG Island + in a ocean of - First order Markov Model,MM=16, HMM= 64
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 面试必 备:山东士官面试题库全记录
- 教学能力提升:师训面试面试题库问题解答心得分享
- 0-6儿童健康知识培训课件
- 学校卫生与安全知识培训课件
- 危急值处理的最佳实践-1
- 六年级数学上册第三单元《分数除法(一)》重难点题型练习(含答案)
- 2025年医疗器械国产化替代政策支持下的产业升级与市场拓展策略研究深度报告
- 不良资产处置行业市场格局分析报告:2025年创新模式战略布局
- 2025年数控系统行业当前发展现状及增长策略研究报告
- 2025年重防腐涂料行业当前市场规模及未来五到十年发展趋势报告
- 财务共享中心下的业财融合策略
- 校园活动讲安全
- 糖尿病酮症酸中毒教学查房课件
- DB37T 5230-2022 岩棉复合板外墙外保温系统应用技术规程
- 车辆免责协议书范本
- 游戏开发流程及测试规范手册
- 风险承担合同模板
- iso220002024食品安全管理体系标准
- GB 3836.15-2024爆炸性环境第15部分:电气装置设计、选型、安装规范
- 新版计量认证质量手册
- 有机农业种植合同
评论
0/150
提交评论