




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角函数的诱导公式【要点梳理】要点一:诱导公式诱导公式一:,其中诱导公式二: , ,其中诱导公式三: , ,其中诱导公式四:, ,其中诱导公式五:, ,其中诱导公式六:, ,其中要点诠释:(1)要化的角的形式为(为常整数);(2)记忆方法:“奇变偶不变,符号看象限”;(3)必须对一些特殊角的三角函数值熟记,做到“见角知值,见值知角”;(4);.要点二:诱导公式的记忆记忆口诀“奇变偶不变,符号看象限”,意思是说角(为常整数)的三角函数值:当为奇数时,正弦变余弦,余弦变正弦;当为偶数时,函数名不变,然后的三角函数值前面加上当视为锐角时原函数值的符号.要点三:三角函数的三类基本题型(1)求值题型:已知一个角的某个三角函数值,求该角的其他三角函数值.已知一个角的一个三角函数值及这个角所在象限,此类情况只有一组解;已知一个角的一个三角函数值但该角所在象限没有给出,解题时首先要根据已知的三角函数值确定这个角所在的象限,然后分不同情况求解;一个角的某一个三角函数值是用字母给出的,这时一般有两组解.求值时要注意公式的选取,一般思路是“倒、平、倒、商、倒”的顺序很容易求解,但要注意开方时符号的选取.(2)化简题型:化简三角函数式的一般要求是:能求出值的要求出值;函数种类要尽可能少;化简后的式子项数最少,次数最低,尽可能不含根号.(3)证明题型:证明三角恒等式和条件等式的实质是消除式子两端的差异,就是有目标的化简.化简、证明时要注意观察题目特征,灵活、恰当选取公式.【典型例题】类型一:利用诱导公式求值例1求下列各三角函数的值:(1);(2);(3)tan(855)【总结升华】(1)对任意角求三角函数值,一般遵循“化负为正,化大为小”的化归方向,但是在具体的转化过程中如何选用诱导公式,方法并不唯一,这就需要同学们去认真体会,适当选择,找出最好的途径,完成求值(2)运用诱导公式求任意三角函数值的过程的本质是化任意角的三角函数为锐角三角函数的过程,而诱导公式就是这一转化的工具【变式1】求sin(1200)cos1290+cos(1020)sin(1050)+tan945的值例2(1)已知,求的值(2)已知,且为第四象限角,求sin(105+)的值【总结升华】注意观察角,若角的绝对值大于2,可先利用2k+转化为02之间的角,然后利用、2等形式转化为锐角求值,这是利用诱导公式化简求值的一般步骤【变式1】 已知,其中为第三象限角,求cos(105)+sin(105)的值类型二:利用诱导公式化简例3化简(1); (2) .【变式1】(1); (2);类型三:利用诱导公式进行证明 例4 求证:【变式1】设A、B、C为的三个内角,求证:(1);(2);(3)【巩固练习】1对于诱导公式中的角,下列说法正确的是( )A一定是锐角 B02C一定是正角 D是使公式有意义的任意角2已知,则下列不等式关系中必定成立的是( )Asin0,cos0 Bsin0,cos0Csin0,cos0 Dsin0,cos03的值为( )A B C D4若,则的值为( )A B C D5若,则cos的值为( )A B C D6在直角坐标系,若与的终边关于y轴对称,则下列等式恒成立的是( )A BC D7sincostan的值是( )A B C D8等于( )Asin2cos2Bcos2sin2C(sin2cos2)Dsin2+cos29tan2010的值为 10已知,且是第四象限的角,则的值是 11si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第17课《夏天里的成长》(第二课时)(说课稿)六年级语文上册同步高效课堂系列(五四制)
- 2024年五年级英语上册 Unit 2 My week第一课时说课稿 人教PEP
- 吉林省长春九年级历史上册 活动科三:我看拿破仑说课稿 新人教版
- 古董典当质押借款合同模板
- 员工因个人原因辞职补偿及心理咨询服务协议
- 食堂员工权益保障与劳动纠纷处理协议
- 民用建筑工程施工阶段绿色施工及环保保密合同
- 教育培训咨询服务合同终止及学员权益保障协议
- 土地承包经营权延期及农业科技创新成果转化补充协议
- 2025年FIDIC合同条件体系的发展
- GB/T 23902-2021无损检测超声检测超声衍射声时技术检测和评价方法
- 邀请函模板完整
- 2020新译林版高中英语选择性必修二全册课文及翻译(英汉对照)
- 大学物理第14章光的衍射课件
- 家长会 课件(共44张ppt) 九年级上学期
- 钻孔灌注桩施工安全控制培训教材课件
- 福建省莆田市各县区乡镇行政村村庄村名明细
- 大班幼儿随访电访记录表内有内容
- 干细胞精品课件
- 太阳能路灯说明书完整版
- 中国老龄化社会的潜藏价值(中英)
评论
0/150
提交评论