已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
设函数f(x)(x1)ln(x1),若对所有的x0,都有f(x)ax成立,求实数a的取值范围解析:解法1:令g(x)=(x+1)ln(x+1)-ax,对函数g(x)求导数:g(x)=ln(x+1)+1-a,令g(x)=0,解得x=ea-1-1.(1)当a1时,对所有x0,g(x)0,所以g(x)在0,+)上是增函数.又g(0)=0,所以对x0,有g(x)g(0),即当a1时,对于所有x0,都有f(x)ax.(2)当a1时,对于0xea-1-1,g(x)0,所以g(x)在(0,ea-1-1)是减函数.又g(0)=0,所以对0xea-1-1,有g(x)g(0),即f(x)ax.所以当a1时,不是对所有的x0,都有f(x)ax成立.综上a的取值范围是(-,1.解法2:令g(x)=(x+1)ln(x+1)-ax,于是不等式f(x)ax成立即为g(x)g(0)成立.对g(x)求导数得g(x)=ln(x+1)+1-a,令g(x)=0,解得x=ea-1-1,当xea-1-1时,g(x)0,g(x)为增函数,当-1xea-1-1时,g(x)0,g(x)为减函数.要对所有x0都有g(x)g(0)充要条件为ea-1-10.由此得a1,即a的取值范围是(-,1.1.其中;2. 其中;3.其中;4. 其中;已知函数,曲线在点处的切线方程为.()求、的值;()如果当,且时,求的取值范围.()略解得,.()方法一:分类讨论、假设反证法由()知,所以.考虑函数,则.(i)当时,由知,当时,.因为,所以当时,可得;当时,可得,从而当且时,即;(ii)当时,由于当时,故,而,故当时,可得,与题设矛盾.(iii)当时, ,而,故当时,可得,与题设矛盾.综上可得,的取值范围为.当,且时,即,也即,记,且则,记,则,从而在上单调递增,且,因此当时,当时,;当时,当时,所以在上单调递减,在上单调递增.由洛必达法则有 ,即当时,即当,且时,.因为恒成立,所以.综上所述,当,且时,成立,的取值范围为.设函数.()若,求的单调区间;()当时,求的取值范围.应用洛必达法则和导数()当时,即.当时,;当时,等价于.记 ,则. 记 ,则,当时,所以在上单调递增,且,所以在上单调递增,且,因此当时,从而在上单调递增.由洛必达法则有,即当时,所以当时,所以,因此.综上所述,当且时,成立.若不等式对于恒成立,求的取值范围.应用洛必达法则和导数当时,原不等式等价于.记,则.记,则.因为,所以在上单调递减,且,所以在上单调递减,且.因此在上单调递减,且,故,因此在上单调递减.由洛必达法则有,即当时,即有.故时,不等式对于恒成立.通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: 可以分离变量;用导数可以确定分离变量后一端新函数的单调性; 现“”型式子.2010海南宁夏文(21)已知函数.()若在时有极值,求函数的解析式;()当时,求的取值范围.解:()略()应用洛必达法则和导数当时,即.当时,;当时,等价于,也即.记,则.记,则,因此在上单调递增,且,所以,从而在上单调递增.由洛必达法则有,即当时,所以,即有.综上所述,当,时,成立.2010全国大纲理(22)设函数.()证明:当时,;()设当时,求的取值范围.解:()略()应用洛必达法则和导数由题设,此时.当时,若,则,不成立;当时,当时,即;若,则;若,则等价于,即.记,则.记,则,.因此,在上单调递增,且,所以,即在上单调递增,且,所以.因此,所以在上单调递增.由洛必达法则有,即当时,即有,所以.综上所述,的取值范围是.设函数()求的单调区间;()如果对任何,都有,求的取值范围解:() 当()时,即;当()时,即因此在每一个区间()是增函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一带一路国家糖尿病防治经验借鉴
- 会计信息质量检查发现的问题、原因分析及对策建议
- 企业成本管理方法与措施(9)-成本管理论文-管理论文
- 医学论文的摘要格式
- 温州大学本科毕业设计论文的撰写规范及要求
- 合并外周动脉疾病心源性脑卒中抗栓治疗方案
- 合并肝硬化的肝癌患者营养支持方案
- 律师实务案例分析
- 302男宿舍的蜕变记喜剧小品剧本润色版本
- 请求权基础案例分析
- 2025年三级安全教育考试真题及答案详解
- 福建省高速公路集团公司招聘考试笔试试题【含答案】
- 2026-2031中国海底电缆行业市场投资价值报告(版)
- 河南科技大学《模拟电子技术》2025年学年期末试卷及答案
- 2025宁电投(石嘴山市)能源发展有限公司秋季校园招聘100人笔试考试参考试题及答案解析
- 2025年高压电工证考试题库及答案(含答案)
- (2025年)《市场营销》期末考试题附答案
- 2026湖北市政建设集团有限公司校园招聘考试笔试参考题库附答案解析
- 2025北京首都儿科研究所、首都医科大学附属首都儿童医学中心面向应届毕业生(含社会人员) 招聘96人笔试考试备考题库及答案解析
- 生产领班基本管理技能培训
- 期末学业质量评价卷一(试卷)2025-2026学年三年级数学上册(人教版)
评论
0/150
提交评论