直角三角形 知识讲解.doc_第1页
直角三角形 知识讲解.doc_第2页
直角三角形 知识讲解.doc_第3页
直角三角形 知识讲解.doc_第4页
直角三角形 知识讲解.doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

直角三角形(提高)【学习目标】1理解和掌握判定直角三角形全等的一种特殊方法“斜边,直角边”(即“HL”).2能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等. 3. 能应用直角三角形的性质解题.【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了。这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了. (2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.要点三、直角三角形的性质定理1:直角三角形的两个锐角互余.定理2:直角三角形斜边上的中线等于斜边的一半.推论1:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.推论2:在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30. 要点诠释:这个定理的前提条件是“在直角三角形中”,是证明直角三角形中一边等于另一边(斜边)的一半的重要方法之一,通常用于证明边的倍数关系.【典型例题】类型一、直角三角形全等的判定“HL”1、 判断满足下列条件的两个直角三角形是否全等,不全等的画“”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等 ( )【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“”;错误的画“”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等( )(2)有两边和其中一边上的高对应相等的两个三角形全等( )(3)有两边和第三边上的高对应相等的两个三角形全等( )【答案】(1);(2);在ABC和DBC中,ABDB,AE和DF是其中一边上的高,AEDF(3). 在ABC和ABD中,ABAB,ADAC,AH为第三边上的高,2、已知:如图,DEAC,BFAC,ADBC,DEBF.求证:ABDC.【答案与解析】证明:DEAC,BFAC, 在RtADE与RtCBF中 RtADERtCBF (HL) AECF,DEBFAEEFCFEF,即AFCE 在RtCDE与RtABF中, RtCDERtABF(SAS) DCEBAF ABDC.【总结升华】从已知条件只能先证出RtADERtCBF,从结论又需证RtCDERtABF.我们可以从已知和结论向中间推进,证出题目.3、如图 ABAC,BDAC于D,CEAB于E,BD、CE相交于F求证:AF平分BAC 【答案与解析】证明:在RtABD与RtACE中RtABDRtACE(AAS)ADAE(全等三角形对应边相等)在RtADF与RtAEF中RtADFRtAEF(HL)DAFEAF(全等三角形对应角相等)AF平分BAC(角平分线的定义)【总结升华】若能证得ADAE,由于ADB、AEC都是直角,可证得RtADFRtAEF,而 要证ADAE,就应先考虑RtABD与RtAEC,由题意已知ABAC,BAC是公共角,可证得RtABDRtACE条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论.举一反三:【变式】已知,如图,AC、BD相交于O,ACBD,CD90 .求证:OCOD.【答案】CD90ABD、ACB为直角三角形在RtABD和RtBAC中RtABDRtBAC(HL)ADBC在AOD和BOC中AODBOC(AAS)ODOC类型二、直角三角形性质的应用4、如图所示,在等边ABC中,AECD,AD、BE相交于点P,BQAD于Q,求证:BP2PQ【答案与解析】证明: ABC为等边三角形, ACBCAB,CBAC60在ACD和BAE中, ACDBAE(SAS) CADABE CADBAPBAC60, ABEBAP60, BPQ60 BQAD, BQP90, PBQ906030, BP2PQ【总结升华】(1)从结论入手,从要证BP2PQ联想到要求PBQ30(2)不能盲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论