




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考选择志愿本论文针对中学毕业生填报高考志愿问题设计一个根据学校的和个人的若干因素排出各个大学志愿的名次模型。对于志愿的选择排名,我们采用层次分析法给出各志愿的排名。用层次分析法,我们先确定各因素的的权系数,再建立层次机构模型,最后进行层次分析,确定ABCD四个志愿的顺序。关键词:层次分析、确定系数、层次结构模型一、 提出问题建立数学模型,对各个高校的志愿进行排名。排名的目的是根据考虑因素排出各个志愿的的一个顺序,所以说一个好的排名算法应满足下面的一些基本要求:保序性、稳定性、对数据可依赖程度给出较为精确的描述。二、 问题重述某中学毕业生填报高考志愿,要考虑到报考学校的名声誉、教学、科研、文体及教学环境,同时又要结合本人的兴趣、考试成绩和毕业后的出路等因素。在每一因素内还有若干子因素,如在教学因素中要考虑到教师的水平、学生的水平、深造条件等。考生可填A、B、C、D四个志愿。 A B C D 名校自豪感 0.8 0.75 0. 7 0.65录取风险 0.7 0.75 0.8 0.85校誉 奖学金 0.6 0.8 0.7 0.75 就业前景 0.8 0.77 0.81 0.75 科研成果 0.7 0.65 0.7 0.71 实验室水平 0.8 0.81 0.76 0.77科研 教师论文 0.7 0.65 0.71 0.69 国家科学奖 0.8 0.78 0.77 0.81 教师水平 0.78 0.79 0.76 0.8教学 学生水平 0.8 0.79 0.78 0.79 深造条件 0.4 0.2 0.45 0.3文体 校园文化 0.8 0.79 0.81 0.8 体育设施 0.65 0.7 0.64 0.65个人兴趣 0.78 0.84 0.76 0.77考试成绩 0.7 0.75 0.8 0.85毕业出路 0.8 0.77 0.81 0.75三、 符号说明A 学校选择B1 校誉B2 科研B3 教学B4 文体B5 个人兴趣B6 考试成绩B7 毕业出路C1 名校自豪感C2 录取风险C3 年奖学金C4 就业前景C5 科研成果C6 实验室水平C7 教师论文C8 国家科学奖C9 教师水平C10 学生水平C11 深造条件C12 校园文化C13 体育设施CI 一致性指标四、 建立模型 选择学校(一) 构造考生高考志愿决策诸多因素的递阶层次结构科研教育文体校誉文体校誉毕业出路个人兴趣考试成绩体育设施校园文化深造条件学生水平教师水平国家科学奖教师论文实验室水平科研成果就业前景奖学金录取风险名校自豪感D志愿C志愿B志愿A志愿(二) 构造成对比较阵面临的决策问题是:要比较n个因素x1,x2,xn,对目标A的影响,我们要确定它们在A中所占的比重,即这n个因素对目标A的相对重要性。我们用两两比较的方法将各因素重要性的定性部分数量化。设有因素x1,x2,xn每次取两个因素xi xj,用正数aij表示xi与xj的重要性之比。由全部比较结果得到矩阵A=(aij),称作成对比较阵A。显然有。然后求出成对比较矩阵A的最大特征值及其对应的特征向量Y=(y1,y2,yn)T,定义标准化向量。用标准化向量Y来反应 这n个因素对目标A的相对重要性,Y为同一层次中相应元素对于上一层次中某个因素相对重要性的排序权值。(三)权向量对于已知的成对比较阵A来说,有AY=。由矩阵运算法则可知:当n较大时,精确地计算成对比较A=(aij)的最大特征值和特征向量比较麻烦,而又由于A中的元素aij是重要性的比值,而重要性是人们根据目标推测出来的,精确度并不高,所以没有必要十分精确地计算出 和特征向量。因此,可以采用下述方法来近似计算和相应的特征向量。对成对比较阵A=(aij),令 (*)称U=(U1,U2,Un)T为X=x1,x2,xn的权向量,它反映n个因素对目标A的相对重要性。经验证,U与Y误差很小,所以一般都用U代替Y。对于公式(*),对于一致性矩阵,即满足aijajk=aikUk可以简化为则.Xi代表第i项因素的重要性指标。五、 模型的改进与推广(1)通过上面的分析与计算,我们已经将填报高考志愿这一问题,由不定性的模糊判断转化为定量的分析,并最终通过建立数学模型,为两位学生各选择了四所最有希望考上的学校。但这只是在理想状况下的结果,有很多问题还需要我们在填报志愿时进行考虑和分析。例如在填报志愿时所报考的学校一定要拉开档次,这样即使第一志愿学校没被录取上,在档次相差较大的第二志愿会有更大希望被录取。我们前面所做出的模型,只是将学生所选择的八个学校定量地排了个名次,所以学生在填报志愿时不能将得分前四名的学校全填在最前面,最终具体如何报考还要看学生当时的实际情况和侧重点。(2)在前面的数学模型中,我并没有直接访问高三学生每两个因素之间的重要性之比(即aij),而是分别问了他们心目中的每个因素的重要性指标,然后再用做出矩阵。这样做是因为直接询问高三学生每两个因素之间的重要性之比比较困难(人们很难马上将两个关联不大的因素用定量化的数字之比表示出他们之间的重要性,而用数字分别表示每个因素的重要性比较容易)。如果我们直接询问高三学生每两个因素之间的重要性之比(即aij),而将其所构成的成对比较阵就可能会出现一致性问题。下面简要说一下关于一致性问题的解决方法。对于成对比较阵A来说,其中的关系应满足 这样的成对比较阵A为一致矩阵。而由于人的思维活动的原因,人们用构成的成对比较阵A往往不是一致矩阵,即 ,所以在分析 X=x1,x2,xn对目标A的影响时,必须对A进行一致性检验。因为n阶成对比较阵A是一致矩阵,当且仅当A的最大特征值 ,所以若A不具有一致性,则。于是我们引入一致性指标。将CI作为衡量成对比较阵A不致程度的标准,当稍大于n时,称A具有满意的一致性。此外,用这样的方法定义一致性是不严格的,还要给出量度。令这里RI为平均随机一致性指标(查表可得),CR称为随机一致性比率,可以用CR代替CI作为一致性检验的临界值。当CR0.1时,就认为A有满意的一致性,否则就必须重新调整成对比较阵A,直到达到满意的一致性为止。(3)关于报考风险。对于因素B5(报考风险)使用了正态分布的方法进行估算,首先调查学生A1,A2的平均成绩和最高成绩,然后调查出他们所报学校在去年的录取分数线,最后利用正态分布计算出他们报考的风险(即考上的概率),然后按0%10%记1,11%20%记290%100%记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全知识培训模板课件
- 安全生产工作方针讲解
- 美容院周年活动方案
- 诸城市:新质生产力发展实践
- 聚丙烯三级安全培训课件
- 2025内蒙古呼伦贝尔农垦莫拐农牧场有限公司招聘16人笔试完整参考答案详解
- 联通车辆安全培训课件
- 2024年广东肇庆航空职业学院招聘真题(行政管理岗)
- 安全生产高清图库讲解
- 联动设备安全培训课件
- 降低会阴侧切率的PDCA
- 团支部(总支)工作手册
- (完整word版)七年级上册湖南地方文化常识教案
- 第二学期六年级家长会PPT名师优质课获奖市赛课一等奖课件
- 公对私转账借款协议书
- 《思想道德与法治》课件第四章明确价值要求践行价值准则第三节积极践行社会主义核心价值观
- 高等土力学土的本构关系
- GB/T 29494-2013小型垂直轴风力发电机组
- GB/T 19188-2003天然生胶和合成生胶贮存指南
- 2023年化工检修钳工题库及答案
- 酒店文化全套教学课件
评论
0/150
提交评论