




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2课时导数与方程题型一求函数零点个数例1(2018乌海模拟)已知函数f(x)2a2lnxx2(a0)(1)求函数f(x)的单调区间;(2)讨论函数f(x)在区间(1,e2)上零点的个数(e为自然对数的底数)解(1)f(x)2a2ln xx2,f(x)2x,x0,a0,当0x0,当xa时,f(x)0.f(x)的单调递增区间是(0,a),单调递减区间是(a,)(2)由(1)得f(x)maxf(a)a2(2ln a1)讨论函数f(x)的零点情况如下:当a2(2ln a1)0,即0a时,函数f(x)无零点,在(1,e2)上无零点;当a2(2ln a1)0,即a时,函数f(x)在(0,)内有唯一零点a,而1a0,即a时,由于f(1)10,f(e2)2a2ln(e2)e44a2e4(2ae2)(2ae2),当2ae20,即a时,1ae2,f(e2)时,f(e2)0,而且f()2a2ea2e0,f(1)10,由函数的单调性可知,无论ae2,还是ae2,f(x)在(1,)内有唯一的零点,在(,e2)内没有零点,从而f(x)在(1,e2)内只有一个零点综上所述,当0a时,函数f(x)在区间(1,e2)上无零点;当a或a时,函数f(x)在区间(1,e2)上有一个零点;当a0),由f(x)0,得xe.当x(0,e)时,f(x)0,f(x)在(e,)上单调递增,当xe时,f(x)取得极小值f(e)lne2,f(x)的极小值为2.(2)由题设g(x)f(x)(x0),令g(x)0,得mx3x(x0)设(x)x3x(x0),则(x)x21(x1)(x1),当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点题型二根据函数零点情况求参数范围例2(2018全国)已知函数f(x)xalnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:2,令f(x)0,得x或x.当x时,f(x)0.所以f(x)在,上单调递减,在上单调递增(2)证明由(1)知,f(x)存在两个极值点当且仅当a2.由于f(x)的两个极值点x1,x2满足x2ax10,所以x1x21,不妨设x11.由于1a2a2a,所以a2等价于x22lnx20.设函数g(x)x2lnx,由(1)知,g(x)在(0,)上单调递减又g(1)0,从而当x(1,)时,g(x)0.所以x22lnx20,即0),所以h(x)1.所以x在上变化时,h(x),h(x)的变化情况如下:x1(1,e)h(x)0h(x)极小值又h3e2,h(1)4,h(e)e2.且h(e)h42e0.所以h(x)minh(1)4,h(x)maxh3e2,所以实数a的取值范围为40,解得xe2,令f(x)0,解得0x时,f(x)min0,f(x)无零点,当a时,f(x)min0,f(x)有1个零点,当a时,f(x)min0,解得x1,令f(x)0,解得0x1,所以f(x)在(0,1)上单调递减,在(1,)上单调递增(2)F(x)f(x)3,由(1)得x1,x2,满足0x11x2,使得f(x)在(0,x1)上大于0,在(x1,x2)上小于0,在(x2,)上大于0,即F(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,)上单调递增,而F(1)0,x0时,F(x),x时,F(x),画出函数F(x)的草图,如图所示故F(x)在(0,)上的零点有3个3已知函数f(x)ax2(aR),g(x)2lnx,且方程f(x)g(x)在区间,e上有两个不相等的解,求a的取值范围解由已知可得方程a在区间,e上有两个不等解,令(x),由(x)易知,(x)在(,)上为增函数,在(,e)上为减函数,则(x)max(),由于(e),(),(e)()0,所以(e)()所以(x)min(e),如图可知(x)a有两个不相等的解时,需a0)(1)若g(x)m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)f(x)0有两个相异实根解(1)g(x)x22e(x0),当且仅当x时取等号,当xe时,g(x)有最小值2e.要使g(x)m有零点,只需m2e.即当m2e,)时,g(x)m有零点(2)若g(x)f(x)0有两个相异实根,则函数g(x)与f(x)的图象有两个不同的交点如图,作出函数g(x)x(x0)的大致图象f(x)x22exm1(xe)2m1e2,其对称轴为xe,f(x)maxm1e2.若函数f(x)与g(x)的图象有两个交点,则m1e22e,即当me22e1时,g(x)f(x)0有两个相异实根m的取值范围是(e22e1,)5已知函数f(x)(x2)exa(x1)2有两个零点(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1x20,则当x(,1)时,f(x)0,所以f(x)在(,1)内单调递减,在(1,)内单调递增又f(1)e,f(2)a,取b满足b0且b(b2)a(b1)2a0,故f(x)存在两个零点设a0,因此f(x)在(1,)内单调递增又当x1时,f(x)0,所以f(x)不存在两个零点若a1,故当x(1,ln(2a)时,f(x)0.因此f(x)在(1,ln(2a)内单调递减,在(ln(2a),)内单调递增又当x1时,f(x)0,所以f(x)不存在两个零点综上,a的取值范围为(0,)(2)证明不妨设x1x2,由(1)知,x1(,1),x2(1,),2x2(,1),f(x)在(,1)内单调递减,所以x1x2f(2x2),即f(2x2)1时,g(x)1时,g(x)0.从而g(x2)f(2x2)0,故x1x22.6已知函数f(x)(3a)x2lnxa3在上无零点,求实数a的取值范围解当x从0的右侧趋近于0时,f(x),所以f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自考专业(法律)模拟试题附答案详解【达标题】
- 资料员之资料员基础知识题库试题附参考答案详解(综合题)
- 采购文件必须要合同范本
- 2025年无机材料表征高级预测题
- 2025年5G网络优化岗位招聘模拟试题
- 化工厂员工入职笔试题及答案-企业管理
- 2025年人才e服安全生产法法规题解集
- 2025年劳动保护法规题及答案解析
- 省专科护士考试题库及答案儿科
- 沈阳市转业士官考试题库及答案
- 2025年部编版新教材语文九年级上册教学计划(含进度表)
- 食堂工作人员食品安全培训
- 战场急救知识
- T∕CITS 146-2024 尿液有形成分名称与结果报告规范化指南
- 主要粮食作物机收减损技术-农业农机技术培训课件
- 水泥化学分析方法培训精品课件
- 《足球运动发展史》PPT课件
- 四年级上册可爱的榆林全册教案
- 金属封闭母线
- 道路工程质量保证措施
- 贵州省评标专家库
评论
0/150
提交评论