




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
全等三角形创新题赏析随着课程改革的不断深入,一大批格调清新、设计独特的开放型、探究型、操作型等创新题纷纷在各地中考试卷上闪亮登场。近年来,有关全等三角形的创新题更令人耳目一新、目不暇接;试题以它的新颖性、思辨性摒弃模式、推陈出新,创造性地描绘了一个绚丽多姿的图形世界。现就近年中考试题归类分析,希望对大家有所帮助和启发。一、条件开放型例1如图,ABC与ABD中,AD与BC相交于O点,1=2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明。你添加的条件是:_。证明:分析:此题答案不唯一,若按照以下方式之一来添加条件:BC=AD,C=D,CAD=DBC,CAB=DBA,都可得CABDBA,从而有AC=BD。点评:本题考查了全等三角形的判定和性质,要由已知条件结合图形通过逆向思维找出合适的条件,有一定的开放性和思考性。二、结论开放型例2如图,已知AB=AD,BC=CD,AC、BD相交于E。由这些条件可以得到若干结论,请你写出其中三个正确的结论。(不要添加字母和辅助线,不要求证明)结论1:结论2:结论3:分析:由已知条件不难得到ABCADC、ABEADE、BECDEC,同时有DAE=BAE、DCA=BCA、ADC=ABC,AC平分DAB与DCB且垂直平分DB等。以上是解决本题的关键所在,也都可以作为最后结论。点评:本题是源于课本而高于课本的一道基本题,可解题思路具有多项发散性,体现了新课程下对双基的考查毫不动摇,且更具有灵活性。三、综合开放型例3如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明。所添条件_。你得到的一对全等三角形是_。证明:分析:在已知条件中已有一组边相等,另外图形中还有一组公共边。因此只要添加以下条件之一:CE=DE,CB=DB,CAE=DAE,都可以直接根据SSS或SAS证得CABDAB或CAEDAE;并且在此基础上又可以进一步得到CEBDEB。点评:本题属于条件和结论同时开放的一道好题目,题目本身并不复杂,但开放程度较高,能激起学生的发散思维,值得重视。四、构造命题型例4如图(4),在ABD和ACE中,有下列四个等式:AB=ACAD=AE1=2BD=CE。请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知、求证及证明过程)分析:根据三角形全等的条件和全等三角形的特征,本题有以下两种组合方式:组合一:条件结论:组合二:条件结论:值得一提的是,若以或为条件,此时属于SSA的对应关系,则不能证得ABCDEF,也就不能组成真命题。点评:几何演绎推理论证该如何考?一直是大家所关注的。本题颇有新意,提供了一种较新的考查方式,让学生自主构造问题,自行设计命题并加以论证,给学生创造了一个自主探究的机会,具有一定的挑战性。这种考查的形式值得重视。五、猜想证明型例5如图,E、F分别是平行四边形ABCD对角线BD所在直线上两点,DE=BF,请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只需研究一组线段相等即可)。(1)连结_;(2)猜想:_;(3)证明:(说明:写出证明过程的重要依据)分析:连接FC,猜想:AC=CF。由平行四边形对边平行且相等,有AB/CD,AD/BC,AB=CD,AD=BC;再加上DE=BF,因此,只要连接FC,根据全等三角形的判定定理SAS,容易证得ABECDF或ADECBF,从而得到AE=CF。点评:此题为探索、猜想、并证明的试题。猜想是一种高层次的思维活动,在先观察的基础上,提出一个可能性的猜想,再尝试能够证明它,符合学生的认知规律。本题难度不大,但结构较新,改变了传统的固有模式。六、判断说理型例6两个全等的含30,60角的三角板ADE和三角板ABC如图所示放置,E,A,C三点在一条直线上,连结BD,取BD的中点M,连结ME,MC。试判断EMC的形状,并说明理由。分析:EMC是等腰直角三角形。由已知条件可以得到:DE=AC,DAE+BAC=90DAB=90。连接AM。由DM=MB可知MA=DM,MDA=MAB=45从而MDE=MAC=105即EDMCAM。因此EM=MC,DME=AMC又易得EMC=90,所以EMC是等腰直角三角形。点评:本题以三角板为载体,没有采取原有的那种过于死板的形式,在一定程度上能激发学生的解题欲望先判断,再说理,试题平中见奇,奇而不怪,独具匠心,堪称好题。七、拼图证明型例7一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上。(1)求证ABED;(2)若PB=BC。请找出图中与此条件有关的一对全等三角形,并给予证明。分析:(1)在已知条件的背景下,显然有ABCDEF,故A=D;又ANP=DNC,因而不难得APN=DCN=90,即ABED。(2)由ABED可得BPD=EFD=90,又PB=BC及PBD=CBA根据ASA有PBDCBA,在此基础上,就不难得到PNACND、PEMFMB。点评:本题将几何证明融入到剪纸活动中,让学生在剪、拼等操作中去发现几何结论,较好地体现了新课程下“做数学”的理念。(2)题结论开放,而且结论丰富,学生可以从不同的角度去进行探索,在参与图形的变化过程及探究活动中创造性地激活了思维,令人回味。八、阅读归纳型例8我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等。那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等。对于这两个三角形均为钝角三角形,可证它们全等(证明略)对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:ABC、A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,C=C1。求证:ABCA1B1C1。(请你将下列证明过程补充完整)证明:分别过点B,B1作BDCA于D,B1D1C1A1于D1,则BDC=B1D1C1=90BC=B1C1,C=C1,BCDB1C1D1BD=B1D1.(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论。分析:(1)由条件AB=A1B1,ADB=A1D1B1=90易得ADBA1D1B1,因此A=A1,又由C=C1,BC=B1C1从而得到ABCA1B1C1。(2)归纳为:两边及其中一边的对角分别对应相等的两个锐角三角形(或直角三角形或钝角三角形)是全等的。点评:边边角问题是全等三角形判定中的难点,也是学生易出错的内容,要涉及三角形形状的分类。本题构思新颖,创造性地设计了阅读情境,引领学生跨越障碍,引导学生合情推理并总结概括,考查了学生阅读理解、类比、概括等综合能力,同时也培养了学生灵活、精细、严谨的数学思维品质。九、作图证明型例9已知RtABC中,C=90。(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)作BAC的平分线AD交BC于D;作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;连接ED。(2)在(1)的基础上写出一对全等三角形:_并加以证明。分析:(1)按照要求用尺规作BAC的平分线AD、作线段AD的垂直平分线,并连接相关线段。(2)由AD平分BAC,可以得到BAD=DAC;由EF垂直平分线段AD,可以得到EHA=FHA=EHD=90,EA=AD,从而有EAD=EDA=FAH,再加上公共边,从而有AEHAFHDEH。以上三组中任选一组即可。点评:作角平分线和线段的垂直平分线是新课标中明确提出的基本作图之一,动手作图,使学生在操作活动的过程中感受知识的自然呈现,体验数学的神秘与乐趣,并实现数学的再创造,从而进一步感受数学的无限魅力,促进数学学习。图1BCA十、实际应用型例1:(西宁市) 如图1,一块三角形模具的阴影部分已破损只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具的形状和大小完全相同的模具?请简要说明理由分析:本题源于生活实际,可以利用全等三角形的知识加以解决.解:只要度量残留的三角形模具片的的度数和边的长因为两角及其夹边对应相等的两个三角形全等(ASA) 评注:这道题考得新颖,因为它就是我们生活中的事情,充分体现了数学来源于生活又用于解决生活实际问题的理念,这也是新课程标准所提倡的.十一、操作探索型例2:(河南省)复习“全等三角形”的知识时,老师布置了一道作业题:“如图2,已知在ABC中,AB=AC,P是ABC内部任意一点,将AP绕A顺时针旋转至AQ,使QAP=BAC,连接BQ、CP,则BQ=CP”图2图3小亮是个爱动脑筋的同学,他通过对图2的分析,证明了ABQACP,从而证得BQ=CP之后,将点P移到三角形ABC之外,原题中的条件不变,发现“BQ=CP”仍然成立,请你就图3给出证明分析:这是一道操作探索型试题,解题时需先通过观察、测量,探求猜想出BQ与CP满足的数量关系,再利用全等三角形的知识进行证明本题小亮已探求得出BQ=CP,只须给出证明即可.解:QAP=BAC,QAP+PABBAC+PAB,即QABPAC,又AQ=AP, AB=AC,ABQACP(SAS),BQ=CP评注:此类试题注重考查同学们对基础知识的掌握,以及动手操作能力和探索精神,已逐渐成为中考的热点题型ABCDEF十二、开放探究型例3:(天门市)如图4,已知AECF,AC,要使ADFCBE,还需添加一个条件_(只需写一个)分析:这是一道条件开放型试题,命题中已给出结论, 但题设的条件不充分,需从不同的角度去寻找使这个结论成立的条件,正确理解、灵活运用三角形全等的条件是求解本题的关键.解:由AECF可得AE+EFCF+EF,即AFCE,又已知AC,要使ADFCBE,可根据“SAS”添加ADCB,或根据“AAS”添加DB,或根据“ASA”添加AFDCEB等条件中的任何一个图5评注:这种题型具有答案不唯一的特点,结构较新,改变了过去的固有模式,创造性的激活了学生的思维.例4:(南宁市)如图5,在ABC中,D是BC的中点,DEAB,DFAC,垂足分别是E、F,BE=CF(1)图中有几对全等的三角形?请一一列出;(2)选择一对你认为全等的三角形进行证明分析:本题属于结论开放型试题,命题中提供一定的条件,但满足条件的结论不唯一. 解题时要综合分析已知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中知时代(北京)文化传播有限公司招聘3人考试参考题库附答案解析
- 2025内蒙古放歌文化传媒有限公司招聘26人考试模拟试题及答案解析
- 2025云南文山州麻栗坡县铁厂乡中心卫生院招聘2人笔试参考题库附答案解析
- 四川省矿产资源储量评审中心2025年公开招聘编外专业技术人员考试参考题库附答案解析
- 2025湖北襄阳市襄高控股发展有限公司招聘初试考试参考题库附答案解析
- 网络营销趋势分析与行业研究报告
- 2025年宣城市中心医院第二批次招聘10人考试参考题库附答案解析
- 智能家居领域产品创新与市场推广计划
- 2025北京市海淀区翠湖小学招聘2人笔试参考题库附答案解析
- 2025福州市水务文化旅游有限公司招聘3人笔试参考题库附答案解析
- 文档管理与归档制度
- 《幼儿园教师家庭教育指导能力现状调查》
- 华东师大版八年级下册数学全册教案(2022年12月修订)
- 消防文员合同模板
- 锁骨骨折内固定术的护理
- DB41T 2599-2024 煤矿地震监测站网技术规范
- 三甲医院临床试验机构-31 V00 专业组备案及考核SOP
- 电缆相关项目实施方案
- 山东畜产品质量安全检测(抽样员)职业技能竞赛理论考试题及答案
- (新版)区块链应用操作员职业技能竞赛理论考试题库-下(多选、判断题)
- 短视频创意内容定制合同
评论
0/150
提交评论