10(1) 信号与系统 周建华 光电学院教学课件_第1页
10(1) 信号与系统 周建华 光电学院教学课件_第2页
10(1) 信号与系统 周建华 光电学院教学课件_第3页
10(1) 信号与系统 周建华 光电学院教学课件_第4页
10(1) 信号与系统 周建华 光电学院教学课件_第5页
已阅读5页,还剩83页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10 1Thez Transform 10 Thez Transform 10 1Thez Transform LTI 1 Definition 10 1Thez Transform 10 1Thez Transform 10 1Thez Transform a Especially whenz ej aboveequationbecomesTheFouriertransformofsignalx n So therelationshipbetweentheFouriertransformandthez transformis 2 TherelationshipbetweenZ transformandtheFouriertransformofx n b Ontheotherhand 10 1Thez Transform 2 RegionofConvergence ROC ROC RangeofzforX z toconvergeRepresentation A InequalityB Regioninz plane 10 1Thez Transform Example10 1Determinethez Transformofx n anditsROC 10 1Thez Transform Solution 10 1Thez Transform Example10 2Determinethez Transformofx n anditsROC 10 1Thez Transform Solution 10 1Thez Transform Figure10 3 10 1Thez Transform and havesameZ transformrepresentation buttheirROCisdifferent Z Z Note forasignalx n wemustgiveoutthez transformwithitsROC 10 1Thez Transform 3 Thepole zeroplotofX z X z canberepresentedtheratiooftwopolynomials thenumeratorpolynomial thedenominatorpolynomial 10 1Thez Transform Definition ThezerosofX z therootsofthenumeratorpolynomialN z iscalledthezerosofX z ThepolesofX z therootsofthedenominatorpolynomialD z iscalledthepolesofX z 10 1Thez Transform TherepresentationofX z throughitspolesandzerosinthez planeisreferredtothepole zeroplotofX z Definition Inthez plane use X toindicatethepolesofX z anduse O toindicatethezerosofX z Ontheotherhand IfM N z X z X z have M N polesatinfinity IfM N z X z 0 X z have N M zerosatinfinity 10 1Thez Transform Example10 1DetermineX z itsROCanditspole zeroplot 10 1Thez Transform Figure10 2 Example 10 1Thez Transform Example10 3Determinethez Transformofx n itsROCanditspole zeroplot 10 1Thez Transform Figure10 4 10 1Thez Transform Example10 4Determinethez Transformofx n itsROCanditspole zeroplot Fugure10 5 10 2TheRegionofConvergenceforthez Transform Property1 TheROCofX z consistsofaringinthez planecenteredtheorigin 10 2TheROCofthez Transform 10 2TheROCofthez Transform Property2 theROCdoesnotcontainanypoles Property3 Ifx n isoffiniteduration thentheROCistheentirez plane exceptpossiblyz 0andz Example Solution 10 2TheROCofthez Transform Example10 5 10 2TheROCofthez Transform Property4 Ifx n isright sidesequence andifthecircle z r0isintheROC thenallvaluesofzforwhich z r0willalsointheROC 10 2TheROCofthez Transform Figure10 7right sidedsequencex n 10 2TheROCofthez Transform a ROCofaright sidedsequence Property5 Ifx n isleft sidedsequence andifthecircle z r0isintheROC thenallvaluesofzforwhich0 z r0willalsobeintheROC 10 2TheROCofthez Transform 10 2TheROCofthez Transform ROCofleft sidedsequence Property6 Ifx n istwosided andifthecircle z r0isintheROC thentheROCwillconsistofaringinthez planethatincludesthecircle z r0 10 2TheROCofthez Transform 10 2TheROCofthez Transform ROCoftwo sidedsequence Example10 6Determinethez transformofthefollowingsignals 10 2TheROCofthez Transform 10 2TheROCofthez Transform Solution ZerosofX z N 1polesofX z poleofX z 10 2TheROCofthez Transform Figure10 9 Example10 7Determinethez transformofthefollowingsignals 10 2TheROCofthez Transform 10 2TheROCofthez Transform Property7 Ifthez transformX z ofx n isrational thenitsROCisboundedbypolesorextendstoinfinity 10 2TheROCofthez Transform Property8 Ifthez transformX z ofx n isrational andifx n isrightsided thentheROCistheregioninthez planeoutsidetheoutmostpole i e outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofX z Furthermore ifx n iscausal i e ifitisrightsidedandequalto0forn 0 thentheROCalsoincludesz 10 2TheROCofthez Transform Property9 Ifthez transformX z ofx n isrational andifx n isleftsided thentheROCistheregioninthez planeinsidetheinnermostpole i e insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofX z otherthananyatz 0andextendinginwardtoanpossiblyincludingz 0 inparticular ifx n isanticausal i e ifitisrightsidedandequalto0forn 0 thentheROCalsoincludesz 0 10 2TheROCofthez Transform Example10 8 ConsiderallofthepossibleROCSofX z Figure10 12 10 2TheROCofthez Transform 10 3TheInversez Transform 10 3Theinversez Transform Show 10 3Theinversez Transform Thecalculationforinversez transformX z 1 Integrationofcomplexfunctionbyequation 2 usingfractionexpansion 10 3Theinversez Transform 3 Longdivision Taylor sseries 长除法 泰勒级数展开法 AppendixPartialFractionExpansion Considerafractionpolynomial 10 3Theinversez Transform 即 X z 是z的有理分式 把X z 表示成z 1的两个多项式之比形式 10 3Theinversez Transform DiscusstwocasesofD z 1 0 fordistinctroots andsameroots 我们这里对X z 以z 1进行部分分式展开 10 3Theinversez Transform Case1 Distinctroots thus 10 3Theinversez Transform CalculateA1 Generally 10 3Theinversez Transform Usingthefollowingrelationshipstoobtainx n 10 3Theinversez Transform 10 3Theinversez Transform Example Computetheinversez transformofX z Solution 10 3Theinversez Transform 10 3Theinversez Transform Case2 Sameroot So 10 3Theinversez Transform Forfirstorderpoles 10 3Theinversez Transform Multiplytwosidesby 1 p1z 1 r Forr orderpoles 10 3Theinversez Transform So 10 3Theinversez Transform 10 3Theinversez Transform using Wecanobtainx n 10 3Theinversez Transform Orusing Wecanobtainx n 10 3Theinversez Transform 10 3Theinversez Transform Example Determinetheinversez transform Solution 10 3Theinversez Transform 10 3Theinversez Transform 10 3Theinversez Transform Example10 910 1010 11Determinetheinversez transformofX z 10 3Theinversez Transform 3 10 3Theinversez Transform IfX z isnotrational computex n bythefollowingrelationships Longdivision Taylor sseries 长除法 泰勒级数展开法 a b Example10 1210 14Determinetheinversez transformofX z 10 3Theinversez Transform a b Example10 13Determinetheinversez transformofX z bylongdivision 10 3Theinversez Transform a 10 3Theinversez Transform Solution b 10 3Theinversez Transform Solution 10 5Propertiesofthez Transform 1 Linearity 10 5propertiesofthez Transform 10 5propertiesofthez Transform 线性性质 线性组合后的收敛域R是线性组合前两个信号的收敛域R1与R2的公共区域 如果在线性组合过程中出现零点与极点相抵消的情况 则收敛域可能会扩大 10 5propertiesofthez Transform Example 2 Timeshifting 10 5propertiesofthez Transform 10 5propertiesofthez Transform 3 Scalinginthez domain 可见 z平面上的尺度展缩 等效于x n 乘以指数序列 当z0为复指数时 z平面上的尺度展缩对应于Z平面上的点沿角度方向进行旋转 沿径向方向伸张或压缩 4 TimeReversal 10 5propertiesofthez Transform 5 Timeexpansion 10 5propertiesofthez Transform 6 Conjugation 7 Convolutionproperty 10 5propertiesofthez Transform Example10 1510 16 10 5propertiesofthez Transform 8 Differentiationinthez domain 10 5propertiesofthez Transform Example1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论