




已阅读5页,还剩19页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二章 统计考点1 随机抽样 用样本估计总体1.(2016山东,3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是() A.56 B.60 C.120 D.1401.解析 由题图知,组距为2.5,故每周的自习时间不少于22.5小时的频率为:(0.160.080.04)2.50.7,人数是2000.7140人,故选D.答案 D2.(2016北京,8)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米)1.961.921.821.801.781.761.741.721.681.6030秒跳绳(单位:次)63a7560637270a1B65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则() A.2号学生进入30秒跳绳决赛 B.5号学生进入30秒跳绳决赛 C.8号学生进入30秒跳绳决赛 D.9号学生进入30秒跳绳决赛2.解析 由数据可知,进入立定跳远决赛的8人为:18号,所以进入30秒跳绳决赛的6人需要从18号产生,数据排序后可知第3,6,7号必须进跳绳决赛,另外3人需从63,a,63,60,a1四个得分中抽取,若63分的人未进决赛,则60分的人就会进入决赛,与事实矛盾,所以63分必进决赛.故选B.答案 B3.(2015四川,3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是() A.抽签法 B.系统抽样法 C.分层抽样法 D.随机数法3.解析 结合几种抽样的定义知选C.答案 C4.(2015北京,4)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()类别人数老年教师900中年教师1 800青年教师1 600合计4 300 A.90 B.100 C.180 D.3004.解析 由题意抽样比为,该样本的老年教师人数为900180(人).答案 C5.(2015陕西,2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为() A.93 B.123 C.137 D.1675.解析 由题干扇形统计图可得该校女教师人数为:11070%150(160%)137.故选C.答案 C6.(2015湖南,2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示若将运动员按成绩由好到差编为135号,再用系统抽样方法从中抽取7人,则其中成绩在区间139,151上的运动员人数是() A.3 B.4 C.5 D.66.解析 由题意知,将135号分成7组,每组5名运动员,成绩落在区间139,151的运动员共有4组,故由系统抽样法知,共抽取4名.选B.答案 B7.(2015重庆,4)重庆市2013年各月的平均气温()数据的茎叶图如下:则这组数据的中位数是() A.19 B.20 C.21.5 D.237.解析 由茎叶图,把数据由小到大排列,处于中间的数为20,20,所以这组数据的中位数为20.答案 B8.(2015山东,6)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:)制成如图所示的茎叶图.考虑以下结论: 甲地该月14时的平均气温低于乙地该月14时的平均气温; 甲地该月14时的平均气温高于乙地该月14时的平均气温; 甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; 甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为() A. B. C. D.8.解析 甲地5天的气温为:26,28,29,31,31,其平均数为x甲29;方差为s(2629)2(2829)2(2929)2(3129)2(3129)23.6;标准差为s甲.乙地5天的气温为:28,29,30,31,32,其平均数为x乙30;方差为s(2830)2(2930)2(3030)2(3130)2(3230)22;标准差为s乙.x甲x乙,s甲s乙.答案 B9.(2014陕西,9)某公司10位员工的月工资(单位:元)为x1,x2,x10,其均值和方差分别为和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为() A.,s21002 B.100,s21002 C.,s2 D.100,s29.解析 方法一对平均数和方差的意义深入理解可巧解.因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变,故选D.方法二 由题意知x1x2xnnx,s2(x1x)2(x2x)2(xnx)2,则所求均值y(x1100)(x2100)(xn100)(nxn100)x100,而所求方差t2(x1100y)2(x2100y)2(xn100y)2(x1x)2(x2x)2(xnx)2s2,故选D.答案 D10.(2014山东,8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17,将其按从左到右的顺序分别编号为第一组,第二组,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为() A.6 B.8 C.12 D.1810.解析 由题意,第一组和第二组的频率之和为0.240.160.4,故样本容量为50,又第三组的频率为0.36,故第三组的人数为500.3618,故该组中有疗效的人数为18612.答案 C 11.(2014广东,6)为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本 ,则分段的间隔为() A.50 B.40 C.25 D.2011.解析 由25,可得分段的间隔为25.故选C.答案 C 12.(2014重庆,3)某中学有高中生3 500人,初中生1 500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为() A.100 B.150 C.200 D.25012.解析 样本抽取比例为,该校总人数为1 5003 5005 000,则,故n100,选A.答案 A13.(2014湖南,3)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则() A.p1p2p3 B.p2p3p1 C.p1p3p2 D.p1p2p313.解析 根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样,每个个体被抽到的概率都是p,故p1p2p3,故选D.答案 D14. (2015福建,13)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_.14.解析 由题意知,男生共有500名,根据分层抽样的特点,在容量为45的样本中男生应抽取人数:4525.答案 2515. (2015江苏,2)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为_.15.解析 这组数据的平均数为(465876)6.答案 616. (2015广东,12)已知样本数据x1,x2,xn的均值5,则样本数据2x11,2x21,2xn1的均值为_.16.解析 由x1,x2,xn的均值x5,得2x11,2x21,2xn1的均值为2x125111.答案 1117.(2015湖北,14)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间0.3,0.9内,其频率分布直方图如图所示. (1)直方图中的a_; (2)在这些购物者中,消费金额在区间0.5,0.9内的购物者的人数为_.17.解析 由频率分布直方图及频率和等于1可得0.20.10.80.11.50.120.12.50.1a0.11,解之得a3.于是消费金额在区间0.5,0.9内频率为0.20.10.80.120.130.10.6,所以消费金额在区间0.5,0.9内的购物者的人数为:0.610 0006 000,故应填3,6 000.答案 (1)3(2)6 00018. (2014湖北,11)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为_件.18. 解析 分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4 800件产品中,甲、乙设备生产的产品总数比为53,所以乙设备生产的产品总数为1 800件.答案 1 80019. (2014天津,9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4556,则应从一年级本科生中抽取_名学生.19.解析 由分层抽样的特点可得应该从一年级本科生中抽取30060(名)学生.答案 6020.(2016北京,17)某市民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图: (1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少? (2)假设同组中的每个数据用该组区间的右端点值代替,当w3时,估计该市居民该月的人均水费.20.解 (1)如题图所示,用水量在0.5,3)的频率的和为:(0.20.30.40.50.3)0.50.85.用水量小于等于3立方米的频率为0.85,又w为整数,为使80%以上的居民在该月的用水价格为4元/立方米,w至少定为3.(2)当w3时,该市居民该月的人均水费估计为:(0.110.151.50.220.252.50.153)40.15340.05(3.53)0.05(43)0.05(4.53)107.21.81.510.5(元).即该市居民该月的人均水费估计为10.5元.21.(2016四川,16)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照0,0.5),0.5,1),4,4.5分成9组,制成了如图所示的频率分布直方图. (1)求直方图中a的值; (2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由; (3)估计居民月均用水量的中位数.21. 解(1)由频率分布直方图,可知:月均用水量在0,0.5)的频率为0.080.50.04.同理,在0.5,1),1.5,2),2,2.5),3,3.5),3.5,4),4,4.5)等组的频率分别0.08,0.21,0.25,0.06,0.04,0.02.由1(0.040.080.210.250.060.040.02)0.5a0.5a,解得a0.30.(2)由(1)知,100位居民月均用水量不低于3吨的频率为0.060.040.020.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 0000.1236 000.(3)设中位数为x吨.因为前5组的频率之和为0.040.080.150.210.250.730.5.而前4组的频率之和为0.040.080.150.210.480.5.所以2x19时,y3 800500(x19)500x5 700.所以y与x的函数解析式为y(xN).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3 800,20台的费用为4 300,10台的费用为4 800,因此这100台机器在购买易损零件上所需费用的平均数为(3 800704 300204 80010)4 000,若每台机器在购机同时都购买20个易损零件,则这100台机器中有90台在购买易损零件上的费用为4 000,10台的费用为4 500,因此这100台机器在购买易损零件上所需费用的平均数为(4 000904 50010)4 050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.23.(2015新课标全国,18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.A地区用户满意度评分的频率分布直方图B地区用户满意度评分的频数分布表满意度评分分组50,60)60,70)70,80)80,90)90,100频数2814106 (1)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图 (2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.23.解 (1) 通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散. (2)A地区用户的满意度等级为不满意的概率大.记CA表示事件:“A地区用户的满意度等级为不满意”;CB表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(CA)的估计值为(0.010.020.03)100.6,P(CB)的估计值为(0.0050.02)100.25.所以A地区用户的满意度等级为不满意的概率大.24.(2015安徽,17)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为40,50),50,60),80,90),90,100. (1)求频率分布直方图中a的值; (2)估计该企业的职工对该部门评分不低于80的概率; (3)从评分在40,60)的受访职工中,随机抽取2人,求此2人的评分都在40,50)的概率.24.解(1)因为(0.004a0.0180.02220.028)101,所以a0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.0220.018)100.4.所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(3)受访职工中评分在50,60)的有:500.006103(人),记为A1,A2,A3;受访职工中评分在40,50)的有:500.004102(人),记为B1,B2,从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是A1,A2,A1,A3,A2,A3,A1,B1,A1,B2,A2,B1,A2,B2,A3,B1,A3,B2,B1,B2.又因为所抽取2人的评分都在40,50)的结果有1种,即B1,B2,故所求的概率为p.25.(2015广东,17)某城市100户居民的月平均用电量(单位:度),以160,180),180,200),200,220),220,240),240,260),260,280),280,300分组的频率分布直方图如图. (1)求直方图中x的值; (2)求月平均用电量的众数和中位数; (3)在月平均用电量为220,240),240,260),260,280),280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在220,240)的用户中应抽取多少户?25.解(1)由(0.0020.009 50.0110.012 5x0.0050.002 5)201得:x0.007 5,所以直方图中x的值是0.0075.(2)月平均用电量的众数是230.因为(0.0020.009 50.011)200.450.5,所以月平均用电量的中位数在220,240)内,设中位数为a,由(0.0020.009 50.011)200.012 5(a220)0.5得:a224,所以月平均用电量的中位数是224.(3)月平均用电量为220,240的用户有0.012 52010025户,月平均用电量为240,260)的用户有0.007 52010015户,月平均用电量为260,280)的用户有0.0052010010户,月平均用电量为280,300的用户有0.002 5201005户,抽取比例,所以月平均用电量在220,240)的用户中应抽取255户.26.(2014山东,16)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区ABC数量50150100 (1)求这6件样品中来自A,B,C各地区商品的数量; (2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.26.解(1)因为样本容量与总体中的个体数的比是,所以样本中包含三个地区的个体数量分别是:501,1503,1002.所以A,B,C三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A,B,C三个地区的样品分别为A;B1,B2,B3;C1,C2.则抽取的这2件商品构成的所有基本事件为:A,B1,A,B2,A,B3,A,C1,A,C2,B1,B2,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有B1,B2,B1,B3,B2,B3,C1,C2,共4个.所以P(D),即这2件商品来自相同地区的概率为.27.(2014新课标全国,18)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组75,85)85,95)95,105)105,115)115,125)频数62638228 (1)在下表中作出这些数据的频率分布直方图: (2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表); (3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?27.解(1)(2)质量指标值的样本平均数为x800.06900.261000.381100.221200.08100.质量指标值的样本方差为s2(-20)20.06(-10)20.2600.381020.222020.08104.所以这种产品质量指标值的平均数的估计值为100,方差的估计值为104.(3)质量指标值不低于95的产品所占比例的估计值为0.380.220.080.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定.28.(2014广东,17)某车间20名工人年龄数据如下表:年龄(岁)工人数(人)191283293305314323401合计20 (1)求这20名工人年龄的众数与极差; (2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.28.解(1)由题可知,这20名工人年龄的众数是30,极差是401921.(2)这20名工人年龄的茎叶图如图所示:(3)这20名工人年龄的平均数为x(1932832953043133240)30,这20名工人年龄的方差为s2(xix)212.6.29.(2014新课标全国,19)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下: (1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.29.解(1)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为67,所以该市的市民对乙部门评分的中位数的估计值是67.(2)由所给茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为0.1,0.16,故该市的市民对甲、乙部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(注:考生利用其他统计量进行分析,结论合理的同样给分.)30.(2014湖南,17)某企业有甲、乙两个研发小组.为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(,),(a,b),(a,b),(a,),(,b),(a,),(,),(a,b),(a,),(,b),(a,b)其中a,分别表示甲组研发成功和失败;b,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平; (2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.30.解(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为x甲;方差为s(1)210(0)25.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为x乙;方差为s(1)29(0)26.因为x甲x乙,ss,所以甲组的研发水平优于乙组.(2)记E恰有一组研发成功.在所抽得的15个结果中,恰有一组研发成功的结果是(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),(a,b),共7个,故事件E发生的频率为.将频率视为概率,即得所求概率为P(E).考点2 变量间的的相关关系与统计案例1.(2015新课标全国,3)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是() A.逐年比较,2008年减少二氧化硫排放量的效果最显著 B.2007年我国治理二氧化硫排放显现成效 C.2006年以来我国二氧化硫年排放量呈减少趋势 D.2006年以来我国二氧化硫年排放量与年份正相关1.解析 从2006年起,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误.故选D.答案 D2.(2015湖北,4)已知变量x和y满足关系y0.1x1,变量y与z正相关,下列结论中正确的是() A.x与y正相关,x与z负相关 B.x与y正相关,x与z正相关 C.x与y负相关,x与z负相关 D.x与y负相关,x与z正相关2.解析 因为y0.1x1,0.10),所以z0.1axab,0.1a0,所以x与z负相关.故选C.答案 C3. (2014江西,7)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是() 4. 表1 表2 性别成绩不及格及格总计男61420女102232总计163652 性别视力好差总计男41620女122032总计163652表3 表4 性别阅读量丰富不丰富总计男14620女23032总计163652 性别智商偏高正常总计男81220女82432总计163652A. 成绩 B.视力 C.智商 D.阅读量3.解析 因为,答案 D4.(2014湖北,6)根据如下样本数据x345678y4.02.50.50.52.03.0得到的回归方程为bxa,则() A.a0,b0 B.a0,b0 C.a0,b0 D.a0,b04.解析 由散点图知b0,选A.答案 A5.(2015北京,14)高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是_;在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是_.5. 解析 由散点图可知:越靠近坐标原点O名次越好,乙同学语文成绩好,而总成绩年级名次靠后;而甲同学语文成绩名次比总成绩名次差,所以应是乙同学语文成绩名次比总成绩名次靠前.丙同学总成绩年级名次比数学成绩年级名次差,所以丙同学成绩名次更靠前的是数学.答案 乙 数学6.(2015新课标全国,19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(xi)2(wi)2(xi)(yi)(wi)(yi)46.65636.8289.81.61 469108.8表中wi,i. (1)根据散点图判断,yabx与ycd哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由) (2)根据(1)的判断结果及表中数据,建立y关于x的回归方程; (3)已知这种产品的年利润z与x,y的关系为z0.2yx.根据(2)的结果回答下列问题: 年宣传费x49时,年销售量及年利润的预报值是多少? 年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归直线vu的斜率和截距的最小二乘估计分别为,.6.解 (1)由散点图可以判断,ycd适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w,先建立y关于w的线性回归方程,由于68,yw563686.8100.6,所以y关于w的线性回归方程为100.668w,因此y关于x的回归方程为100.668.(3)由(2)知,当x49时,年销售量y的预报值100.668576.6,年利润z的预报值576.60.24966.32.根据(2)的结果知,年利润z的预报值0.2(100.668)xx13.620.12.所以当6.8,即x46.24时, 取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.7.(2015重庆,17)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号t12345储蓄存款y(千亿元)567810 (1)求y关于t的回归方程t; (2)用所求回归方程预测该地区2015年(t6)的人民币储蓄存款.附:7.解(1)列表计算如下itiyittiyi11515226412337921448163255102550153655120这里n5,ti3,yi7.2.又lttlty从而1.2,aybt7.21.233.6,故所求回归方程为y1.2t3.6.(2)将t6代入回归方程可预测该地区2015年的人民币储蓄存款为y1.263.610.8(千亿元).回归方程t中,.8.(2014辽宁,18)某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西柳州市柳江区综合行政执法局招聘市容协管员1人考前自测高频考点模拟试题及1套参考答案详解
- 2025年皖南医学院第二附属医院招聘28人模拟试卷有答案详解
- 2025年中国火原木火木柴行业市场分析及投资价值评估前景预测报告
- 2025广东深圳市服务高质量发展专项招录紧缺专业公务员486人考前自测高频考点模拟试题及完整答案详解
- 2025年甘肃畜牧工程职业技术学院招聘工作人员15人考前自测高频考点模拟试题参考答案详解
- 2025哈尔滨“丁香人才周”(春季)引才现场招聘活动考前自测高频考点模拟试题及一套答案详解
- 2025年中国化妆品级颜料行业市场分析及投资价值评估前景预测报告
- 2025贵州罗甸县第一医共体沫阳分院招聘合同制专业技术人员考前自测高频考点模拟试题附答案详解
- 2025年广东江门开平市公安局第一批警务辅助人员招聘59人考前自测高频考点模拟试题(含答案详解)
- 2025年绥化职业技术教育中心2025年度“市委书记进校园”引才8人模拟试卷及答案详解(历年真题)
- 2025年山东第一医科大学第三附属医院公开招聘人员(17名)考试参考题库及答案解析
- 新疆博物馆课件介绍
- 2025贵州金控集团特需人才引进4人(第二批次)笔试历年参考题库附带答案详解
- 2026中国电建集团成都勘测设计研究院有限公司招聘笔试备考试题及答案解析
- 江苏省镇江市丹阳市高级中学重点班2025-2026学年高一上学期9月月考语文试题(含答案)(解析版)
- 2025-2026学年高二物理上学期第一次月考卷(原卷及解析)【测试范围:第1~3章】(考试版A4)(广东专用)
- 2025年电工考试题库(内附答案)
- 朝鲜族朝鲜语考试题及答案
- 2025年成考专升本政治时政练习题及答案
- GB/T 11182-2025橡胶软管增强用钢丝
- 人事培训专员培训课件
评论
0/150
提交评论