第三章-传感器的弹性敏感元件设计分解.ppt_第1页
第三章-传感器的弹性敏感元件设计分解.ppt_第2页
第三章-传感器的弹性敏感元件设计分解.ppt_第3页
第三章-传感器的弹性敏感元件设计分解.ppt_第4页
第三章-传感器的弹性敏感元件设计分解.ppt_第5页
免费预览已结束,剩余25页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第3章传感器中的弹性敏感元件设计3 1弹性敏感元件的基本特性3 1 1弹性特性3 1 2弹性滞后3 1 3弹性后效3 1 4固有振动频率3 2弹性敏感元件的材料3 3弹性敏感元件的特性参数计算3 3 1弹性圆柱3 3 2悬臂梁3 3 3扭转棒3 3 4平膜片3 3 6薄壁圆筒3 3 7双端固定梁 变形 物体在外力作用下改变原来的尺寸或形状的现象 弹性变形 如果外力去掉后物体能够完全恢复原来的尺寸和形状的变形 弹性元件 具有弹性变形特性的物件 弹性敏感元件 通过物体弹性变形这一特性 把力 力矩或压力转换成为相应的应变或位移 然后配合其它各种形式的传感元件 将被测力 力矩或压力转换成电量的一种元件 X 3 1弹性敏感元件的基本特性 3 1 1弹性特性作用在弹性敏感元件上的外力与该外力引起的相应变形 应变 位移式转角 之间的关系称为弹性元件的弹性特性 弹性特性可由刚度或灵敏度来表示 X 一 刚度 F 作用在弹性元件上的外力 x 弹性元件产生的变形 刚度可以反映元件抵抗弹性变形能力的强弱 X 二 灵敏度 灵敏度就是单位力作用下产生变形的大小 m 并联或串联弹性敏感元件的数目 Sni 第i个弹性敏感元件的灵敏度 X 3 1 2弹性滞后 X 对弹性元件进行加载 可绘制一条弹性特性曲线 然后卸载 可绘制另一条弹性特性曲线 两条曲线往往并不重合 这种现象称为弹性滞后 弹性变形之差 叫做弹性敏感元件的滞后误差 曲线1 2所包围的范围称为滞环 3 1 3弹性后效 弹性元件上载荷发生改变时 相应的变形往往不能立即完成 而是在一个时间间隔内逐渐完成 这种现象称为弹性后效 X 3 1 4固有振动频率 弹性敏感元件的动态特性和被测载荷变化时的滞后现象等 都与元件的固有振动频率有关 固有振动频率有多阶 通常只关心其中的最低阶 且一般地总希望弹性敏感元件具有较高的固有振动频率 固有频率的计算比较复杂 只有少数规则形状的弹性元件具有理论解 所以实际中常常通过实验来确定 X 3 2弹性敏感元件的材料 弹性敏感元件在传感器中直接参与变换和测量 因此材料的选用十分重要 在任何情况下 材料应保证具有良好的弹性 足够的精度和稳定性 通常使用的材料为合金结构钢 铜合金 铝合金等 铬锰弹簧钢和铬钒弹簧钢具有优良的机械性能 可用于制作承受交变载荷的重要弹性敏感元件 黄铜可用于制造受力不大的弹簧及膜片 德银用于制造抗腐蚀的弹性元件 锡磷青铜用于制造一般的弹性元件或抗腐蚀性能好的弹性元件 铍青铜用于制造精度高 强度好的弹性敏感元件 不锈钢用于制造强度高 耐腐蚀性好的弹性敏感元件 X 对弹性敏感元件材料的基本要求归纳如下 1 弹性滞后和弹性后效要小 2 弹性模量的温度系数要小 3 线膨胀系数要小且稳定 4 弹性极限和强度极限要高 5 具有良好的稳定性和耐腐蚀性 6 具有良好的机械加工和热处理性能 X 3 3弹性敏感元件的特性参数计算 3 3 1弹性圆柱柱形弹性敏感元件主要用于电阻应变式拉力 压力 传感器中 X 弹性圆柱上任一点处在与轴线成角的截面上的应力 应变为弹性圆柱上各点在垂直于轴线的截面上 a 90 的应力 应变为在平行轴线的截面上 a 0 应力 应变为 X 圆柱应变的一般表达式为 圆柱内各点的应变大小决定于圆柱的灵敏度结构系数 横截面积 材料性质和圆柱所承受的力 而与圆柱的长度无关 柱形弹性元件的固有频率f0为 为了提高灵敏度 应当选择弹性模量小的材料 此时虽然相应的固有频率降低了 但固有频率降低的程度比应变量的提高来得小 总的衡量还是有利的 不降低应变值来提高固有频率必须减短圆柱的长度或选择密度低的材料 X 上述所有结论同时适用于空心截面和实心截面的圆柱弹性敏感元件 空心截面的弹性元件在某些方面优于实心元件 在同样的截面积情况下 空心截面圆柱的外直径可以较大 因此圆柱的抗弯能力大大提高 另外 较大直径圆柱对于由温度变化而引起的曲率半径相对变化敏感程度较小 从而使温度变化对测量的影响减小 但应注意 如果空心圆柱的壁太薄 受压力作用后将产生较明显的屈曲变形即桶形变形 影响测量精度 X 3 3 2悬臂梁 悬臂梁是一端固定一端自由的金属梁 作为弹性敏感元件 它的特点是结构简单 工方便 适用于较小力的测量 根据梁的截面形状不同又可分为等截面梁和等强度梁 X 一 等截面梁 随着位置x的不同 在梁上各个位置所产生的应变也是不同的 在x 0处应变最大 在x l处应变为零 X 挠度y与作用力F的关系为等截面悬臂梁的固有振动频率为 X 二 等强度梁 作用力F必须加在梁的两斜边的交汇点T处 否则无法保证各处的应变大小相等 X 等强度梁自由端挠度为固有振动频率表达式为 X 3 3 3扭转棒 在力矩测量中常常用到扭转棒 图所示为圆截面的扭转棒 一端固定 一端自由 当棒自由端承受力矩Mt时 在棒表面产生的沿圆周方向的剪切应力为 X 单位长度上的扭转角单位长度上的扭转角fi与扭矩Mt成正比 与乘积GJ成反比 GJ称为抗扭刚度 扭转棒长度为l时的扭转角为 X 3 3 4平膜片 圆形膜片分为平面膜片和波纹膜片两种 在相同压力情况下 波纹膜片可产生较大的挠度 膜盒是两个波纹膜片对焊在一起具有腔体的盒状元件 测量气体的压力 主要介绍圆形平膜片 X 平膜片在设计计算中所采用的假设归纳如下 1 圆形平膜片 其周边是固支的 2 平膜片的最大挠度不大于1 3膜厚 因而属小挠度理论范围 3 被测压力均匀作用于平膜片表面 X 径向应力切向应力径向应变切向应变在圆板中心 r 0 处 切向应力与径向应力相等 切向应变与径向应变相等 而且具有正的最大值 在圆板的边缘 r a 处 切向应力 径向应力和径向应变都达到负的最大值 而切向应变为零 X X 平膜片的挠度中心 r 0 处的挠度得最大值平膜片的固有频率 X 3 3 6薄壁圆筒 薄壁圆筒壁厚一般都小于圆筒直径的1 20 内腔与被测压力相通 内壁均匀受压 薄壁不受弯曲变形 只是均匀地向外扩张 X 筒壁的每一单元将在轴线方向和圆周方向的拉伸应力分别为 X 在传感器的实际应用中 电阻应变片既不沿轴向粘贴 也不沿周向粘贴 而是在与轴向 或周向 成某一角度的方向上粘贴 测得的应变与粘贴方向的应力有关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论