




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章 地理信息系统的地理数学基础六十年代至今,世界各国已建成了上千个地理信息系统,这些系统应用领域广,特别是应用在自然资源和环境等方面显示了很强的能力和极好的效果。对于每一个系统而言,具有各自不同的特征,但有一点是共同的,这就是每一个地理信息系统都具有统一的地理基础。 地理基础是地理信息数据表示格式与规范的重要组成部分。它主要包括统一的地图投影系统,统一的地理网格坐标系以及统一的地理编码系统。它为各种地理信息的输入输出以及匹配处理提供一个统一的定位框架,从而使各种地理信息和数据能够具有共同的地理基础。3.1地图投影概述 一、地图投影的基本问题 地图投影的基本问题是如何将地球表面(椭球面或圆球面)表示到地图平面上。由于地球椭球面或圆球面是不可展开的曲面,即不能展开成平面,而地图又必须是一个平面,所以将地球表面展开成地图平面必然会产生裂隙或褶皱。那么采用什么样的数学方法将曲面展开成平面,而使其误差最小,必须采用地图投影的方法,即用各种方法将地球表面的经纬网线投影到地图平面上。不同的投影方法具有不同性质和大小的投影变形,因此在各类地理信息系统的建立过程中,选择恰当的地图投影系统就是首先必须要考虑的问题。 投影,数学上的含义是两个面之间点与点、线与线的对应。同样,地图投影的定义是:建立地球椭球表面(或球体表面)与地图平面之间点与点或线与线之间的一一对应关系。 如果地球表面上有一点A(,),它在平面上的对应点是A(X,Y),按地图投影的定义,其数学转化公式为: 二、地图投影的变形 地球表面是一个不规则的曲面,即使把它当作一个椭球体或正球体表面,在数学上讲,它也是一种不能展开的曲面,要把这样一个曲面表现到平面上,就会发生裂隙或褶皱。在投影面上,则以经纬线的“拉伸”或“压缩”(通过数学手段)来避免之,从而可形成一幅完整的地图,也就因此而产生了变形。地图投影的变形,通常可分为长度、面积和角度三种变形,其中长度变形是其它变形的基础。为了进一步了解地图上的变形,应知道下列术语及其定义: 长度比地面上微分线段投影后的长度ds与其相应的实地长度ds之比。如用符号表示长度比,那么=ds/ ds。 长度变形长度比与1之差值。如用符号V表示长度变形即 V=-1 投影上的长度比不仅随该点的位置而变化,而且随着在该点上不同方向而变化。这样,在一定点上的长度比必存在有最大值和最小值,称其为极值长度比,并通常用符号a和b表示极大与极小长度比。极值长度比的方向称为主方向。沿经线和纬线方向的长度比分别用符号m,n表示。在经纬线正交投影中,沿经纬线方向的长度比即为极值长度比,此时m=a或 b,n=b或a。面积比地面上微分面积投影后的大小dF与其相应的实地面积dF的比称为面积比,通常用符号P表示,即P=dF/dF面积变形面积比与1之差值。用符号Vp表示,那么Vp=P-1角度变形地面上某一角度投影后的角值与其实际的角值之差。即-。在一定点上,方位角的变形随不同的方向而变化,所以一点上不同方向的角度变形是不同的。投影中,一定点上的角度变形的大小是用其最大值来衡量的,即称最大角度变形,通常用符号表示。 变形椭圆地球面上无穷小圆在投影中通常不可能保持原来的形状和大小,而是投影成为不同大小的圆或各种形状大小的椭圆,统称为变形椭圆。如图3-1-1。 r r r b a a b a b a b 实地上的一个微分圆 a=b=rr ab=r2 ar, b=r abr 图3-1-1 变形椭圆 一般可以根据变形椭圆来确定投影的变形情况。如投影后为大小不同的圆形,见图311(1),a=b则该投影为等角投影;如果投影后为面积相等而形状不同的椭圆,如图3-1-1(2),ab=r2 则该投影为等面积投影;如果投影后为面积不等形状各不相同的椭圆,如图3-1-1(3)则为任意投影,其中如果椭圆的某一半轴与微分圆的半径相等,如b=r则为等距离投影。从变形椭圆中还可看出,变形椭圆的长短半轴即为极值长度比,长轴与短轴的方向即主方向。等变形线投影上变形值相等的点的连线,有面积比等值线、最大角度变形等值线等。地图投影略图上绘有等变形线,用以直观评价地图投影的变形分布状况和投影使用的优劣。在地图制图实践中为了获得具有较小的变形及其在制图区域内变形分布最均匀的投影,提出使投影上的等变形线与制图区域的轮廓形状基本一致的要求,并把它作为投影选择上的一个基本原则。 三、地图投影的分类 地图投影的分类方法很多,总的来说,基本上可以依外在的特征和内在的性质进行分类。下面介绍常用的几种地图投影分类方法。 1根据地图投影的变形(内蕴的特征)分类 根据地图投影中可能引入的变形的性质,可以分为等角、等面积和任意(其中包括等距离)投影。 (1) 等角投影:地球表面上无穷小图形投影后仍保持相似,或两微分线段所组成的角度在投影后仍保持相似,或两微分线段所组成的角度在投影后仍保持不变,这种投影称等角投影(又称正形投影)。在等角投影中,微分圆经投影后仍为圆形,随点位(纬度增加)的变化,面积有较大变形,见图3-1-2。 (2)等面积投影:地球面上的图形在投影后保持面积不变,这种投影称等面积投影。在等面积投影中,微分圆变成不同形状的椭圆,但变形椭圆面积保持相等,只有角度产生很大变形见图3-1-2。 等积投影 等距投影 等角投影图3-1-2 由变形椭圆看不同的三种投影(3)任意投影:既不具备等角性质,又没有等面积性质的投影,统称为任意投影。在任意投影中,如果沿某一主方向的长度比等于1,即a=1或b=1,则这种投影称为等距离投影。 2. 根据投影面与地球表面的相关位置分类在地图投影中,我们首先将不可展的椭球面投影到一个可展曲面上,然后将该曲面展开成为一个平面,得到我们所需要的投影。通常采用的这个可展曲面有圆锥面、圆柱面、平面(曲率为零的曲面),相应地可以得到圆锥投影、圆柱投影、方位投影。同时还可以由投影面与地理轴向的相对位置区分为正轴投影(极点在两地极上,或投影面的中心线与地轴一致)、横轴投影(极点在赤道上,或投影面的中心线与地轴垂直)及斜轴投影(极点既不在两地极上又不在赤道上,或投影面的中心线与地轴斜交)。对这一分类可以用图3-1-3表示出。在这一分类中,当投影面与地球面相切时称为切投影,而投影面与地球面相割时称为割投影。O 正 轴 横 轴 斜 轴方位圆锥圆柱E1EPP1OE1EPP1OE1EPP1OP1E1EPP1E1EPOE1EPP1E1EPP1EP1E1PEPP1OE1图3-1-3 投影方法示意图 3.根据正轴投影时经纬网的形状分类 据这一标志,投影可分为圆锥、圆柱、方位、伪圆锥、伪圆柱、伪方位和多圆锥投影等。 (1) 圆锥投影:投影中纬线为同心圆圆弧,经线为圆的半径(见图3-1-4C右),且经纬间的夹角与经差成正比例。 该投影按变形性质又可分为等角、等面积和任意(主要为等距离)圆锥投影。等角圆锥投影也称为兰勃特(Lambert)正形圆锥投影;正轴等面积割圆锥投影亦叫亚尔勃斯(Albers)投影。 (2) 圆柱投影:投影中纬线为一组平行直线,经线为垂直于纬线的另一组平行直线,且两相邻经线之间的距离相等(图314C左)。 该投影按变形性质可分为等角、等面积和任意(包括等距离)圆柱投影。等角圆柱投影亦叫墨卡托(Mercator)投影,它在海图和小比例尺区域地图上有广泛应用。等角横切椭圆柱投影,即著名的高斯克吕格(Gallss-kruger)投影,等角横割椭圆柱投影即通用横轴墨卡托(UTM)投影,它们都广泛用于编制大比例尺地形图。 (3) 方位投影:投影中纬线为同心圆,经线为圆的半径(图314C右),且经线间的夹角等于地球面上相应的经差。 该投影有非透视方位投影和透视方位投影之分。非透视方位投影按变形性质可分为等角、等面积和任意(包括等距离)方位投影。等面积方位投影亦称为兰勃特(Lambert)等面积方位投影。等距离方位投影又称为波斯托(Postel)投影。(4) 伪圆锥投影:投影中纬线为同心圆圆弧,经线为交于圆心的曲线(图314B2右)。B1AB1B2B2CC 图3-1-4 投影类型(5)伪圆柱投影:投影中纬线为一组平行直线,而经线为某种曲线(图314B2左)。 (6)伪方位投影:投影中纬线为同心圆,而经线为交于圆心的曲线(图314B2右)。 (7) 多圆锥投影:投影中纬线为同轴圆圆弧,其圆心在中央直径线上,而经线为对称中央直径线的曲线(图314A右)。3.2 地理信息系统中地图投影的配置与设计 一、地图投影与GIS的关系 地图是地理信息系统的主要数据来源,即地理信息系统的数据多来自于各种类型的地图资料。不同的地图资料根据其成图的目的与需要的不同而采用不同的地图投影。当来自这些地图资料的数据进入计算机时,首先就必须将它们进行转换,用共同的地理坐标系统和直角坐标系统作为参照系来记录存储各种信息要素的地理位置和属性,保证同一地理信息系统内(甚至不同的地理信息系统之间)的信息数据能够实现交换、配准和共享,否则后续所有基于地理位置分析、处理及应用都是不可能的。地图投影对地理信息系统的影响是渗透在地理信息系统建设的各个方面的,它们之间的相互关系见图321。 地 图 投 影 (地 理 基 础) 数 据 输 入 数 据 处 理 数 据 应 用 数 据 输 出 (源地图投影数据) (投 影 变 换) (检索、空间分析 (有相应投影的 依据数据库投影) 地图) 图 3-2-1 地图投影与GIS的关系 二、GIS中地图投影的配置与设计 通过对国内外各种地理信息系统分析,可以发现,各种地理信息系统中投影系统的配置与设计一般具有以下的特点: 1各个国家的地理信息系统所采用的投影系统与该国的基本比例尺地图系列所用的投影系统一致; 2地理信息系统中各种比例尺的投影系统与其相应比例尺的主要信息源地图所用的投影一致; 3各地区的地理信息系统中的投影系统与其所在区域适用的投影系统一致; 4各种地理信息系统一般只采用一种或两种投影系统,以保证地理定位框架的统一。 对上述特征,还可以从国外一些国家的地理信息系统的配置中分析得到。 加拿大地理信息系统,简称为CGIS,是世界上公认的第一个地理信息系统。这个系统的最主要的信息源是12000张各种用途的土地利用图,其比例尺系列为112.5万、125万、150万,这些土地利用图是用同比例尺的地形图系列为地理底图编制而成的,采用了与加拿大国家地形图系列一致的地图投影系统,即大于、等于150万时采用通用横轴墨卡托投影(UTM投影),小于150万时采用正轴等角割圆锥投影(Lambert投影)。CGIS以UTM投影作为系统的地理基础,考虑到图幅数量和使用方便等原因,选定了以125万作为系统的主比例尺。虽然小于150万的地图上精确定位信息小,可量测性差,但鉴于CGIS的数据处理子系统具有自动拼幅形成较大区域数据库的能力,以及CGIS以全国、省、市、地方四级为存储、分析、检索和输出层次,且加拿大国家基本比例尺地图多采用Lambert投影,故该系统同时配置了Lambert投影作为中小比例尺数据的地理基础。日本国土信息系统(ISLAND)是日本国家地理信息系统中最具规模和最具代表性的,它的目的是更为有效的管理有关国土的各种数字化信息和图像信息。它的主要数据来源是地形图、土地利用图、航片和卫片。日本的地形图和土地利用图系列采用了UTM投影,卫片采用了斜轴墨卡托(HOM)投影,航片采用了UTM投影,故ISLAND采用了UTM投影。美国的地理信息系统建设的特点是先分散后统一,其所建系统的数量之多遥遥领先于世界上任何一个国家。UTM投影是美国国家基本比例尺地图系统所用的投影系统,州平面坐标系是美国国家海洋测量局,在国家大地测量系统中的UTM投影的基础上,为每个州设计的平面坐标系统。州平面坐标系统以高斯克吕格投影(等角横切椭圆柱投影)和Lambert投影为主,局部地区采用了HOM投影。州平面坐标系在设计时已经顾及到了投影对所在区域的地理适应性,保证了该州范围内投影的精度,故大多数州际的地理信息系统也选用了州平面坐标系为系统的数学基础。 由此,可以给出地理信息系统中地图投影配置的一般原则为: 1所配置的投影系统应与相应比例尺的国家基本图(基本比例尺地形图、基本省区图或国家大地图集)投影系统一致; 2系统一般最多只采用两种投影系统,一种服务于大比例尺的数据处理与输入输出,另一种服务于中小比例尺; 3所用投影以等角投影为宜; 4所用投影应能与网格坐标系统相适应,即所用的网格系统在投影带中应保持完整。3.3我国地理信息系统中的地图投影的应用 我国的各种地理信息系统中都采用了与我国基本比例尺地形图系列一致的地图投影系统,这就是大于等于150万时采用高斯克吕格投影,1100万采用正轴等角割圆锥投影。这种坐标系统的配置与设计是因为: 1我国基本比例尺地形图(15千,11万,12.5万,15万,110万,125万,150万和1100万)中大于等于150万的图均采用高斯克吕格投影为地理基础; 2我国1100万地形图采用正轴等角割圆锥投影,其分幅与国际百万分之一所采用的分幅一致; 3我国大部分省区图多采用正轴等角割圆锥投影和属于同一投影系统的正轴等面积割圆锥投影; 4正轴等角圆锥投影中,地球表面上两点间的最短距离(即大圆航线)表现为近于直线,这有利于地理信息系统中空间分析和信息量度的正确实施。因此,我国地理信息系统中采用高斯投影和正轴等角圆锥投影既适合我国的国情,也符合国际上通行的标准,下面对这两种投影分别予以介绍。 一、高斯克吕格投影我国现行的大于及等于150万比例尺的各种地形图都采用高斯克吕格投影,简称高斯投影。(一) 高斯投影的概念高斯投影从几何概念上分析,它是一种等角横切椭圆柱投影。如图3-3-1所示,我们把地球看成是地球椭球体,假想用一个椭圆筒横套在其上,使筒与地球椭球体的某一经线相切,椭圆筒的中心轴位于赤道上,按等角条件将地球表面投影到椭圆筒上,然后将椭圆筒展开成平面。 XNNOYO赤道SS图3-3-1 高斯克吕格投影 (二)高斯投影的基本条件(性质) 1中央经线(椭圆筒和地球椭球体的切线)和赤道投影成垂直相交的直线; 2投影后没有角度变形(即经纬线投影后仍正交); 3中央经线上没有长度变形,等变形线为平行于中央经线的直线。 根据上述三个条件,即可导出高斯投影的直角坐标基本公式:+-+-+=)185(cos120)1(cos6cos42552233jjjlhjjljltgtgNtgNNY式中: X,Y平面直角坐标系的纵、横坐标;j、椭球面上地理坐标系的经纬度(分别自赤道和投影带中央经线起算); s由赤道至纬度的子午线弧长; N纬度处的卯酉圈曲率半径(可据纬度由制图用表查取); 2=e2cos2,其中e2 = (a2b2) / b2,为地球的第二偏心率,a,b分别为地球椭球体的长短轴。 (三)投影的变形分析与投影带的划分 +高斯投影没有角度变形,面积变形是通过长度变形来表达的。其长度变形的基本公式为: 由公式可知长度变形的规律是: 1中央经线上没有长度变形,即=0时,=1; 2在同一条纬线上,离中央经线越远变形越大,即增大,也增大; 3在同一条经线上,纬度越低,变形越大,即越小,越大。 表31为高斯投影6带内长度变形值。 表31说明,投影变形最大值在赤道和投影边缘经线的交点上。当经差为3时,长度变形为1.38,3带范围内最大长度变形为0.38。表31变 经 形 差 纬度 值012390000000000000000000080000000000000200000470000000200000400000660000000400001500003450000000600002500005740000000900003600008130000001200004600010320000001300005400012110000001400005900013400000015000061000138 为了控制投影变形不致过大,保证地形图精度,高斯投影采用分带投影方法,即将投影范围的东西界加以限制,使其变形不超过一定的限度。我国规定12.5万150万地形图均采用经差6分带,大于等于11万比例尺地形图采用经差3分带。 6分带法 从格林尼治零度经线起,自东半球向西半球,每经差6分为一个投影带,见图3-3-2。nnL120123400190602120315018030524252627287201381078014840158701807502930313233349001699096017102018105018093035363738394010801911701140201200211230180111041575859601680291770174030180031-1770-17401710614243444512602213501320231380129046图332 高斯投影分带示意图 东半球的30个投影带,是从0起算往东划分,即东经06,612,174180,用阿拉伯数字130予以标记。各投影带的中央经线位置,可用下式计算(式中n为投影带带号): L0=(6n-3) 西半球的30个投影带,是从180起算,回到0,即,西经180-174,174- 168,60;各带的带号为3160,各投影带中央经线的位置,可用下式计算(式中n为投影带带号): L0=(6n-3)-360 我国领土位于东经72136之间,共包括11个投影带,即1323带,各带的中央经线分别为75,81,135,如图3-3-2。 3分带法 从东经130算起,每3为一带,将全球划分为120个投影带,即东经130430,430730,东经17830至西经17830,西经130至东经130。其中央经线的位置分别为3,6,9,180,西经177,3,0。这样分带的目的在于使6带的中央经线均为3带的中央经线。即3带中有半数的中央经线同6带重合,在从3带转换成6带时,可以直接转用,不需任何计算。 59XX(四)高斯平面直角坐标网高斯投影平面直角网,它是由高斯投影每一个投影带构成一个单独的坐标系。投影带的中央经线投影后的B直线为x轴(纵轴),赤道投影后的直线为y轴(横轴),它XBA们的交点为原点。YXA我国位于北半球,全部x值都是正值,在每个投影YBYBYOO带中则有一半的y值为负。为了使计算中避免横坐标y 500kmYA值出现负值,规定每带的中央经线西移500公里。由于YA图333高斯投影每一个投影带的坐标都是对本带坐标原点的相对值,所以,各带的坐标完全相同。为了指出投影带是哪一带,规定要在横坐标(通用值)之前加上带号即可。因此,计算一个带的坐标值,制成表格,就可供查取各投影带的坐标时使用(有关地形图图廓点坐标值可从高斯克吕格坐标表中查取)。如图3-3-3,A、B两点原来的横坐标分别为: yA=245863.7m yB=-168474.8m 纵坐标轴西移500公里后,其横坐标分别为: yA=745863.7m yB=331525.2m 加上带号,如A、B两点位于第20带,其通用坐标为: yA=20745863.7m yB=20331525.2m 二、正轴等角圆锥投影 (一)定义 假想一个圆锥其轴与地球椭球旋转轴重合地套在椭球上,按等角的条件把地球椭球上经纬线投影到圆锥面上,然后沿一条母线(经线)将圆锥面切开展成平面,这就是正轴等角圆锥投影。这种投影最适合于中纬度地区,为世界上许多国家制作地图所使用。 我国新编的1100万地图采用双标准纬线正等轴角圆锥投影,见图3-3-4,即圆锥面与椭球面相割的两条纬线圈,称之为标准纬线(1,2)。采用双标准纬线的相割比采用单标准纬线的相切,其投影变形小而均匀。 为了提高投影精度,我国1100万地图的投影是按百万分之一地图的纬度划分原则(从0开始,纬差4一幅),从南到北共分成15个投影带,每个投影带单独计算坐标,建立数学基础。 图3-3-4正等角割圆锥投影及其经纬线图形 两条标准纬线近似地选在下式所示的位置,见图3-3-5。1s+302N 30 处于同一投影带中的各图幅的坐标成果完全相同,因此,每投影带只需计算其中一幅图(纬差4,经差6)的投影成果即可。 (二)投影变形正等角割圆锥投影变形的分布规律是: 1.角度没有变形,即投影前后对应的微分面积保持图形相似,故亦可称为正形投影。2.等变形线和纬线一致,同一条纬线上的变形处处相等;3.两条标准纬线上没有任何变形; 4.在同一经线上,两标准纬线外侧为正变形(长度比大于1),而两标准纬线之间为负变形(长度比小于1)。因此,变形比较均匀,绝对值也比较小;5.同一纬线上等经差的线段长度相等,两条纬线间的经纬线长度处处相等。21NS12NS 图3-3-5双标准纬线 图3-3-6 投影变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国家事业单位招聘2025中央财经大学学校办公室收发室岗招聘1人(非事业编制)笔试历年参考题库附带答案详解
- 南昌市2025江西南昌动物园招聘1人笔试历年参考题库附带答案详解
- 商品收纳培训课件
- 2025浙江舟山国家远洋渔业基地建设发展集团招聘14人笔试参考题库附带答案详解
- 2025数字重庆公司下属智算科技分公司招聘29人笔试参考题库附带答案详解
- 2025年度国家计算机网络应急技术处理协调中心省级分中心公开招聘21人笔试参考题库附带答案详解
- 2025国网湖南省电力有限公司高校毕业生招聘约390人(第二批)笔试参考题库附带答案详解
- 2025四川眉山市国有资本投资运营集团有限公司招聘50人笔试参考题库附带答案详解
- 2025内蒙古鄂尔多斯市天安公交集团招聘21人笔试参考题库附带答案详解
- 2025中远海运博鳌有限公司“启明星”等你来笔试参考题库附带答案详解
- 穴位按摩法操作评分标准
- 充电站运营管理制度(参考模板)
- 体育与健康教学设计《手倒立前滚翻》
- NISP一级考前模拟训练题库200题(含答案)
- JJG 20-2001标准玻璃量器
- 2024外研版初中英语单词表汇总(七-九年级)中考复习必背
- 《大数据平台部署与运维》课程标准(含课程思政)
- 英语中的时间表达(示范课例)
- 脊柱外科进修汇报
- 《史记》上册注音版
- 苏州大学文学院语言学纲要课程笔记
评论
0/150
提交评论