




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
穿根法解不等式的原理、步骤和应用范例摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)(x-xn)0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。关键词:穿根法;解不等式;原理;步骤;应用穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。一、 原理穿根法解不等式时,一般先将其化为形如:f(x)=(x-x1)(x-x2)(x-xn)0 (或0 (或0的解;而x1左边的点都是小于x1的点,即是x-x10 (或0)(1) x1x2时,不妨设x10,处于(x1,x2)内的点满足f(x) 0;而当点x=a从x2右侧移动到左侧时,x-x2变为负值,而x-x1符号不变,所以有f(x)必然变号,此时由正变负;而再当点x=a从x1右侧移动到左侧时,x-x1由正变负,而x-x2符号不变,所以f(x)又一次变号,此时由负变正。总之,无论从哪个方面看,f(x)的符号都可以如图标注。(2) x1=x2时,即形如f(x)=(x-x1)2时显然,(-,x1)与( x1 ,+)都是f(x) 0的解。而若动态的考察此问题,则有点x=a 从x1右侧移动向左侧移动时,由于平方项内的x-x1由正到0又到负,所以f(x)经历了由正到0又回到正的过程。故而f(x)在x1两侧符号同正,只有在x=x1处为0。(三) 高次不等式标准形式:f(x)=(x-x1)(x-x2)(x-xn)0 (或0),x1x2xn(1) x1x20;而当点x=a从xn右侧移动到左侧时,x-xn符号变化,而其余任一x-xi均不变号,所以有f(x)由正变负;类似可得:对任一i,当点x=a从xi右侧移动到左侧时,x-xi符号变化,而其余每个x-xj (ji)都不变号,所以有f(x)必然变号,或由正变负,或由负变正。就这样,由于每过一个xi都恰有一个因式x-xi变号,所以我们可以从最右上方开始画一条依次穿过各根的线,这正是穿根法的原理和名称由来。(2) x1x2xn且有等号成立时其标准形式可写为f(x)=(x-x1)m1(x-x2) m2(x-xn) mn 0 (或0),x1x20,其中f(x)为x的高次多项式,用穿根法解的步骤如下:(1)整理原式化为标准型 把f(x)进行因式分解,并化简为下面的形式:f(x)=(x-x1)m1(x-x2) m2(x-xn) mn 0(或0解集,在序轴下方的曲线对应的区间为f(x)0或f(x)/g(x)0 f(x)g(x)0 f(x)/g(x)0 f(x)g(x) 0即将分式不等式转化为整式不等式再处理。(三) 含等号的整式、分式不等式对于整式不等式,要注意写解集时将各个根包括进去。一般只需将开区间符号改为闭区间符号,同时注意必要时合并区间。对于分式不等式,尤其要注意分母非0。 f(x)/g(x)0 f(x)g(x)0 且 g(x)0 f(x)/g(x)0 f(x)g(x)0且 g(x)0这样就要求在标根时,将能够使不等式成立的根标为实点,否则标为虚点。(四) 注意分式不等式和高次不等式在化简时每一步变形都应是不等式的等价变形。对于变形中出现的形如x2+px+q=0的因式,若其0,则继续分解。若0,则直接消去,因为此时该式恒大于0。三、 应用范例例1 解不等式:(x-1)2(x+1)(x-2)(x+4)120解:将原不等式变形:(x-1)(x-4)(x-2)(x-3)-1200(x2-5x+4)(x2-5x+6)-1200(x2-5x)2+10(x2-5x)-960(x2-5x+16)(x2-5x-6)0(x2-5x+16)(x-6)( x+1)0 x2-5x+16恒大于零,于是得与原不等式同解的不等式(x-6)( x+1)0对此也可用穿根法解决,如图所以,原不等式的解集是:(-,-1)(6,+)例4 解不等式: (3x-5)/( x2+2x-3) 2解:原不等式 (3x-5-2x2-4x+6)/(x2+2x-3)0 (2x2+4x-6-3x+5)/(x2+2x-3)0 (2x2+x-1)/(x2+2x-3)0 (x+1)(2x-1)/(x+3)(x-1)0 (x+1)(2x-1)(x+3)(x-1)0 且 (x+3)(x-1)0 如图,用穿根法,注意区分实点和虚点,可得原不等式解集为:(-,-3)-1,1/2(1,+ )例5 解关于x的不等式:(x-1)(x-t)0解:1) t1时,如图用穿根法,可得原不等式解集为:(1,t)例6 若a1,解关于x的不等式 (x-a)/(x+1)(x-1)0解:1) a-1时,如图用穿根法,原不等式解集为:(-,a)(-1,1)2) -1a1时,如图用穿根法,原不等式解集为:(-, -1)(1, a说明:解整式、分式不等式注意事项,可记以下口诀:移项调号,分解排序,奇穿偶回,分母非零,参数讨论,小心等号。四、 小结穿根法通过序轴、标根、穿根线及区间正负标志,形象的表示f(x)=(x-x1)(x-x2)(x-xn)值的符号变化规律,较好体现了数形结合的思想,具备直观明晰的优点。它还有数轴标根法、区间法,根轴法等名称,但相对来说,用“序轴标根法”作为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 天然气管道建设项目节能评估报告
- 第3课 班级BMI数据测试-数据的收集与处理说课稿-2025-2026学年小学信息科技清华版贵州2024四年级上册-清华版(贵州)2024
- 4.1夯实法治基础(说课稿)2024-2025学年统编版道德与法治九年级上册
- 第11课 国之瑰宝-影片剪辑和添加转场效果教学设计小学信息技术(信息科技)六年级上册清华大学版
- Unit 2 No rules,no order Section A 1a-1e 说课稿 2024-2025学年人教版(2024)英语七年级下册
- 山东省惠州市惠东县梁化中学九年级化学下册 10.2 酸和碱之间会发生什么反应说课稿 新人教版
- 2025年事业单位招聘考试时事政治考试题库附含参考答案
- 集材工班组评比模拟考核试卷含答案
- 真空设备装配调试工诚信道德竞赛考核试卷含答案
- 第十一课 絮絮叨叨满是情说课稿-2025-2026学年小学心理健康六年级鄂科版
- 企业员工在职证明模板
- 新媒体运营PPT完整全套教学课件
- 计算机系统阐述(海协360智能管理软件最终版)
- 毒理学12预防基础人卫12版
- 32《细胞器之间的分工合作》教案
- 义务教育英语课程标准-评价部分解读课件
- 国家开放大学电大专科《药理学》形考任务4试题及答案(试卷号:2118)
- 中职语文《雨巷》市公开课一等奖省名师优质课赛课一等奖课件
- 铁道概论全套课件
- GB∕T 2518-2019 连续热镀锌和锌合金镀层钢板及钢带
- 外贡丹-外科集腋卷一-方剂加减变化汇总
评论
0/150
提交评论