资金的时间价值理论PPT课件_第1页
资金的时间价值理论PPT课件_第2页
资金的时间价值理论PPT课件_第3页
资金的时间价值理论PPT课件_第4页
资金的时间价值理论PPT课件_第5页
已阅读5页,还剩52页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1资金的时间价值理论 1 1资金时间价值的概念1 2资金的时间价值的度量1 3资金等值与现金流量图1 4资金复利等值换算的基本公式 1 1资金时间价值的概念 古时候 一个农夫在开春的时候没有种子 于是他问邻居借了一斗稻种 秋天收获时 他向邻居还了一斗一升稻谷 资金的时间价值 利息利润红利分红股利收益 资金的时间价值是指资金的价值随时间的推移而发生价值的增加 增加的那部分价值就是原有资金的时间价值 资金具有时间价值并不意味着资金本身能够增值 而是因为资金代表一定量的物化产物 并在生产与流通过程中与劳动相结合 才会产生增值 资金的时间价值是客观存在的 只要商品生产存在 资金就具有时间价值 通货膨胀是指由于货币发行量超过商品流通实际需要量而引起的货币贬值和物价上涨现象 资金的价值不只体现在数量上 而且表现在时间上 投入一样 总收益也相同 但收益的时间不同 收益一样 总投入也相同 但投入的时间不同 影响资金时间价值的主要因素 资金的使用时间 资金数量的大小 资金投入和回收的特点 资金的周转速度 1 2资金时间价值的度量 1 利息与利率 2 计息方式 3 利息的计算方法 1 利息与利率 利息是货币资金借贷关系中借方支付给贷方的报酬 它是劳动者为全社会创造的剩余价值 社会纯收入 的再分配部分 在工程经济学中 利息 广义的含义是指投资所得的利息 利润等 即投资收益 利率是指在单位时间内所得利息额与原借贷资金的比例 它反映了资金随时间变化的增值率 在工程经济学中 利率 广义的含义是指投资所得的利息率 利润率等 即投资收益率 影响利率的主要因素 社会平均利润率的高低 金融市场上借贷资本的供求情况 贷出资本承担风险的大小 借款时间的长短其他 商品价格水平 社会习惯 国家经济与货币政策等 有效利率 是指按实际计息期计息的利率 当实际计息期不以年为计息期的单位时 就要计算实际计息期的利率 有效利率 假设年初借款为P 年利率为r 一年中计息m次 则实际计息期的利率 即有效利率i r m此处的年利率r并不是一年的实际利率 称为名义利率 是计息周期的有效利率与一年的计息次数的乘积 2 计息方式 例 甲向乙借了2000元 规定年利率12 按月计息 一年后的本利和是多少 1 按年利率12 计算F 2000 1 12 2240 2 月利率为按月计息 F 2000 1 1 12 2253 6 年名义利率 年有效利率 年名义利率为12 不同计息期的有效利率 由表可见 当计息期数m 1时 名义利率等于有效利率 当m 1时 有效利率大于名义利率 且m越大 即一年中计算复利的有限次数越多 则年有效利率相对与名义利率就越高 间断式计息i F P P P 1 r m m P P 1 r m m 1一般有效年利率不低于名义利率 连续式计息即在一年中按无限多次计息 此时可以认为m 例 某地向世界银行贷款100万美元 年利率为10 试用间断计息法和连续计息法分别计算5年后的本利和 解 用间断复利计算 F P 1 i n 100 1 10 5 161 05 万 用连续复利计息计算 利率 i er 1F P 1 i n P 1 er 1 n Pern 100 e0 1 5 164 887 万 3 利息的计算方法 1 单利法I P i nF P 1 i n 2 复利法F P 1 i nI P 1 i n 1 P 本金i 利率n 计息周期数F 本利和I 利息 例 1000元存银行3年 年利率10 三年后的本利和为多少 单利法与复利法的比较 注意 工程经济分析中 所有的利息和资金时间价值计算均为复利计算 例 某人现在借款1000万元 在5年内以年利率10 还清全部本金和利息 有四种还款方式 在5年中每年年末只还利息 本金在第五年末一次还清 在5年中不作任何偿还 只在第五年年末一次还清本金和利息 将本金作分期均匀摊还 每年年末偿还本金200万元 同时偿还到期利息 每年年末等额偿还本金和利息 1 3资金等值与现金流量图 1 资金等值的含义 2 现金流量及现金流量图 1 资金等值的含义 两个不同事物具有相同的作用效果 称之为等值 资金等值 是指由于资金时间的存在 使不同时点上的不同金额的资金可以具有相同的经济价值 如 两个力的作用效果 力矩 是相等的 例 现在拥有1000元 在i 10 的情况下 和3年后拥有的1331元是等值的 影响资金等值的因素 资金量 计息周期的长短和利率 2 现金流量及现金流量图 1 现金流量2 现金流量图3 现金流量图的相关概念4 累计现金流量图 1 现金流量 现金流出 指方案带来的货币支出 现金流入 指方案带来的现金收入 净现金流量 指现金流入与现金流出的代数和 现金流量 上述统称 2 现金流量图 一个计息周期 时间的进程 第一年年初 零点 第一年年末 也是第二年年初 节点 1000 1331 现金流出 现金流入 i 10 现金流量图因借贷双方 立脚点 不同 理解不同 通常规定投资发生在年初 收益和经常性的费用发生在年末 1331 i 10 1000 储蓄人的现金流量图 银行的现金流量图 i 10 1331 3 现金流量图的相关概念 时值与时点 在某个资金时间节点上的数值称为时值 现金流量图上的某一点称为时点 现值 P 指一笔资金在某时间序列起点处的价值 终值 F 又称为未来值 指一笔资金在某时间序列终点处的价值 折现 贴现 指将时点处资金的时值折算为现值的过程 年金 A 指某时间序列中每期都连续发生的数额相等资金 计息期数 n 即计息次数 广义指方案的寿命期 1331 i 10 1000 4 累计现金流量图 1 4资金复利等值换算的基本公式 1 一次支付的复利现值与终值互算公式 2 等额收支的复利终值与年金互算公式 3 等额收支的复利现值与年金互算公式 4 变额收支序列的换算公式 5 系数符号与复利系数表 6 一般现金流量公式 1 一次支付的复利现值与终值互算公式 1 复利终值公式2 复利现值公式 1 复利终值公式 已知P 求F F P 1 i n 1 i n为一次支付复利终值系数 用符号 F P i n 表示 例 1000元存银行3年 年利率10 三年后的本利和为多少 F P 1 i n 1000 1 10 3 1331 2 复利现值公式 已知F 求P 1 i n为一次支付现值系数 用符号 P F i n 表示 例 3年末要从银行取出1331元 年利率10 则现在应存入多少钱 P F 1 i n 1331 1 10 3 1000 2 等额收支的复利终值与年金互算公式 1 年金终值公式2 偿债基金公式 1 年金终值公式 已知A 求F 注意 等额支付发生在年末 1 i n 1 i为年金复利终值系数 用符号 F A i n 表示 例 零存整取 A 1000 12 月 i 2 F 2 偿债基金公式 已知F 求A i 1 i n 1 为偿债基金系数 用符号 A F i n 表示 例 存钱创业 A 4 i 10 F 30000元 5 23岁 28岁 3 等额收支的复利现值与年金互算公式 1 年金现值公式2 资金回收公式 1 年金现值公式 已知A 求P 1 i n 1 i 1 i n 为年金现值系数 用符号 P A i n 表示 例 养老金问题 A 2000元 20 i 10 P 60岁 80岁 2 资金回收公式 已知P 求A i 1 i n 1 i n 1 为资金回收系数 用符号 A P i n 表示 例 贷款归还 A 4 i 10 P 30000元 5 25岁 30岁 4 变额收支序列的换算公式 1 等差现金流量序列公式2 等比现金流量序列公式 1 等差现金流量序列公式 即每期期末收支的现金流量序列是成等差变化的 F A 1 i n 1 i G 1 i n 1 1 i G 1 i n 2 1 i G 1 i 1 1 i FA FG 梯度支付终值系数 符号 F G i n 梯度系数 符号 A G i n 例 某人考虑购买一块尚末开发的城市土地 价格为2000万美元 该土地所有者第一年应付地产税40万美元 据估计以后每年地产税比前一年增加4万元 如果把该地买下 必须等到10年才有可可能以一个好价钱将土地出卖掉 如果他想取得每年15 的投资收益率 则10年该地至少应该要以价钱出售 2000 40 44 48 72 76 售价 2000 F P 15 10 40 F A 15 10 4 F G 15 10 9178 11 美元 2 等比现金流量序列公式 即每期期末发生的现金流量序列是成等比变化的 A 1 s P i 利率 n A S 通胀率 A 1 s 2 A 1 s n 1 2 当i s的情况下 3 当s o的情况下 例 前面养老金问题 假设第一年需要的养老金为2000元 以后每年随物价上涨而增加 设通货膨胀率s 8 则养老基金需要多少 原需17028元 2160 P i 10 20 2000 S 8 2333 2000 1 8 19 60岁 80岁 5 系数符号与复利系数表 1 六个基本公式及其系数符号2 复利系数表3 复利系数表的应用 1 六个基本公式及其系数符号 F P 1 i n 公式系数 F P i n P F i n F A i n A F i n A P i n P A i n 系数符号 公式可记为 F P F P i n P F P F i n F A F A i n A F A F i n A P A P i n P A P A i n 2 复利系数表 复利系数表中包含了三种数据 即系数 利率 计息次数 根据各系数符号 查表即可得到相应的系数 知道了三项数据中的任意两项 还可以通过查表得到另一项 3 复利系数表的应用 求利率例 某人今年初借贷1000万元 8年内 每年还154 7万元 正好在第8年末还清 问这笔借款的年利率是多少 解 已知P 1000万 A 154 7万 n 8 A P A P i n A P i n A P 154 7 1000 0 1547查表中的资金回收系数列 第五列p336 在n 8的一行里 0 1547所对应的i为5 i 5 求计息期数例 假设年利率为6 每年年末存进银行1000元 如果要想在银行拥有存款10000元 问需要存几年 解 已知i 6 A 1000元 F 10000元 A F A F i n A F i n A F 1000 10000 0 1查偿债基金系数 附表6第四列 在i 6 时 当n1 8时 A F 6 8 0 101当n2 9时 A F 6 9 0 0870利用线性内插法 求得 n 8 0 1 0 101 0 087 0 101 8 07 年 6 一般现金流量公式 Kp Kf 01234 n 1n K1 K3 K2 K4 Kn 1 Kn 例 求下图所示现金流量的现值 基准收益率为10 P 15000 2500 P A 10 2 4000 P A 10 4 P F 10 2 5000 F A 10 6 P F 10 12 1000 F G 10 6 P F 10 12 15000 2500 1 7355 4000 3 1699 0 8264 5000 7 7156 0 3186 1000 17 1561 0 3186 8897 例题 例1 年利率为12 每半年计息1次 从现在起连续3年每半年末等额存款为200元 问与其等值的第0年的现值是多少 解 计息期为半年的有效利率为i 12 2 6 P 200 P A 6 6 983 46 元 例2 年利率为9 每年年初借款4200元 连续借款43年 求其年金终值和年金现值 A 4200 A 4200 1 9 解 F A F A i n 4200 1 9 440 8457 2018191 615 元 P A P A i n 4200 1 9 10 838 49616 364 元 例3 年利率为12 每季度计息一次 从现在起连续3年的等额年末存款为1000元 与其等值的第3年的年末借款金额是多少 解 年有效利率为 方法二 取一个循环周期 使这个周期的年末支付转变成等值的计息期末的等额支付系列 将年度支付转换为计息期末支付 A F A F 3 4 1000 0 2390 239 元 r 12 n 4 则i 12 4 3 F A F A i n A F A 3 12 239 14 192 3392元 F 1000 F P 3 8 1000 F P 3 4 1000 1000 1 267 1000 1 126 3392元 方法三 把等额支付的每一个支付看作为一次支付 求出每个支付的将来值 然后把将来值加起来 这个和就是等额支付的实际结果 例4 某住宅楼正在出售 购房人可采用分期付款的方式购买 付款方式 每套240万元 首付60万元 剩余180万元款项在最初的五年内每半年支付4万元 第二个5年内每半年支付6万元 第三个5年内每半年内支付8万元 年利率8 半年计息 该楼的价格折算成现值为多少 解 P 60 4 P A 4 10 6 P A 4 10 P F 4 10 8 P A 4 10 P F 4 20 154 9 万元 例5 一个男孩 今年11岁 5岁生日时 他祖父母赠送他4000美元 该礼物以购买年利率4 半年计息 的10年期债券方式进行投资 他的父母计划在孩子19 22岁生日时 每年各用3000美元资助他读完大学 祖父母的礼物到期后重新进行投资 父母为了完成这一资助计划 打算在他12 18岁生日时以礼物形式赠送资金并投资 则每年的等额投资额应为多少 设每年的投资利率为6 解 以18岁生日为分析点 设12 18岁生日时的等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论