


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时分层作业(五)(建议用时:60分钟)基础达标练一、选择题1若5名代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有()AA种B45种C54种DC种D由于4张同样的参观券分给5名代表,每人最多分一张,从5名代表中选4人满足分配要求,故有C种2从黄瓜、白菜、油菜、扁豆4种蔬菜中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共有()A24种B18种C12种 D6种B先选后排,共CA18种3某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有()A140种B120种C35种D34种D从7人中选4人,共有C35种选法,4人全是男生的选法有C1种故4人中既有男生又有女生的选法种数为35134.4身高各不相同的7名同学排成一排照相,要求正中间的同学最高,左右两边分别顺次一个比一个低,这样的排法种数是()A5 040B36 C18D20D最高的同学站中间,从余下6人中选3人在一侧只有一种站法,另3人在另一侧也只有一种站法,所以排法有C20(种)5直线ab,a上有5个点,b上有4个点,以这九个点为顶点的三角形个数为()ACCCCB(CC)(CC)CC9DCCA可以分为两类:a上取两点,b上取一点,则可构成三角形个数为CC;a上取一点,b上取两点,则可构成三角形个数为CC,利用分类加法计数原理可得以这九个点为顶点的三角形个数为CCCC,故选A.二、填空题6正六边形顶点和中心共7个点,可组成_个三角形32不共线的三个点可组成一个三角形,7个点中共线的是:正六边形过中心的3条对角线,即共有3种情况,故组成三角形的个数为C332.7将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有_种. 112每个宿舍至少2名学生,故甲宿舍安排的人数可以为2人,3人,4人,5人,甲宿舍安排好后,乙宿舍随之确定,所以有CCCC112种分配方案8若7名志愿者中安排6人在周六、周日两天参加社区公益活动若每天安排3人,则不同的安排方案共有_种(用数字作答)140第一步,安排周六有C种方法,第二步,安排周日有C种方法,所以不同的安排方案共有CC140种三、解答题9(1)以正方体的顶点为顶点,可以确定多少个四面体?(2)以正方体的顶点为顶点,可以确定多少个四棱锥?解(1)正方体8个顶点可构成C个四点组,其中共面的四点组有正方体的6个表面及正方体6组相对棱分别所在的6个平面的四个顶点故可以确定四面体C1258个(2)由(1)知,正方体共面的四点组有12个,以这每一个四点组构成的四边形为底面,以其余的四个点中任意一点为顶点都可以确定一个四棱锥,故可以确定四棱锥12C48个1012件产品中,有10件正品,2件次品,从这12件产品中任意抽出3件(1)共有多少种不同的抽法?(2)抽出的3件中恰好有1件次品的抽法有多少种?(3)抽出的3件中至少有1件次品的抽法有多少种?解(1)有C220种抽法(2)分两步:先从2件次品中抽出1件有C种方法;再从10件正品中抽出2件有C种方法,所以共有CC90种抽法(3)法一(直接法):分两类:即包括恰有1件次品和恰有2件次品两种情况,与(2)小题类似共有CCCC100种抽法法二(间接法):从12件产品中任意抽出3件有C种方法,其中抽出的3件全是正品的抽法有C种方法,所以共有CC100种抽法能力提升练1某外商计划在4个城市中投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有()A16种 B36种 C42种 D60种D若3个不同的项目投资到4个城市中的3个,每个城市一项,共A种方法;若3个不同的项目投资到4个城市中的2个,一个城市一项、一个城市两项,共CA种方法由分类加法计数原理知共ACA60种方法2从乒乓球运动员男5名、女6名中组织一场混合双打比赛,不同的组合方法有()ACC种BCA种CCACA种DAA种B先从5名男选手中任意选取2名,有C种选法,再从6名女选手中任意选择两名与选出的男选手打比赛,有CA,即A种,所以共有CA种32名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有_种12先分医生有A种,再分护士有C种(因为只要一个学校选2人,剩下的2人一定去另一学校),故共有AC212种4若从1,2,3,9这9个整数中同时取4个不同的数,其和为奇数,则不同的取法共有_种60若四个数之和为奇数,则有1奇数3个偶数或者3个奇数1个偶数若1奇数3个偶数,则有CC20种,若3个奇数1个偶数,则有CC40种,共有204060种5已知集合Aa1,a2,a3,a4,B0,1,2,3,f是从A到B的映射(1)若B中每一元素都有原象,则不同的映射f有多少个?(2)若B中的元素0无原象,则不同的映射f有多少个?(3)若f满足f(a1)f(a2)f(a3)f(a4)4,则不同的映射f又有多少个?解(1)显然映射f是一一对应的,故不同的映射f共有A24个(2)0无原象,而1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风机叶片涂装质量检验考核试卷及答案
- 滴水法松香工抗压考核试卷及答案
- 推土犁司机内部技能考核试卷及答案
- 石作文物修复师职业考核试卷及答案
- 翻罐工适应性考核试卷及答案
- 劳动定员定额师技术考核试卷及答案
- 医院环境卫生学监测试题及答案解析
- 影像学技术面试题及答案
- 地产项目前期营销策划合同
- 银行招聘考试题库及答案
- 燃料电池催化剂研究报告
- 2025年化妆品代理合同范本模板
- 2025年江苏省农垦集团有限公司人员招聘笔试备考及参考答案详解
- 2025至2030年中国粗杂粮及粗杂粮加工行业市场调研分析及投资战略咨询报告
- 军用无人机讲解课件
- 2025年中国移动校园招聘笔试试题解析及答题技巧
- 长宏国际安全知识培训课件
- 2025-2026学年地质版(2024)小学体育与健康三年级(全一册)教学设计(附目录P123)
- 项目四旅游电子商务网络营销92课件
- 电缆桥架设备知识培训课件
- 快乐的牛仔课件
评论
0/150
提交评论