静电场中的导体和电介质习题课_第1页
静电场中的导体和电介质习题课_第2页
静电场中的导体和电介质习题课_第3页
静电场中的导体和电介质习题课_第4页
静电场中的导体和电介质习题课_第5页
已阅读5页,还剩43页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

静电场中的导体和电介质习题课 一 教学要求 1 理解导体静电平衡的条件 2 掌握导体达到静电平衡后 导体电荷分布的计算 导体表面邻近处的场强必定和导体表面垂直 导体内部场强处处为零 或 导体是等势体 导体表面是等势面 导体内处处净电荷为零 导体表面邻近处的场强 3 掌握有导体存在时的电场分布的计算 计算有导体存在时的静电场分布的基本依据 导体静电平衡条件 电荷守恒定律 高斯定理 对各向同性电介质 4 理解电位移矢量的定义 5 确切理解有电介质的高斯定理 并能利用它求解有电介质存在时具有一定对称性的电场问题 平行板电容器 静电场有电介质时的高斯定理 6 理解电容的定义 掌握汁算简单电容器和电容器组的电容的方法 电容的定义 并联电容器组 串联电容器组 7 掌握电容器的电能公式并能计算电容器的能量 8 理解电场能量密度的概念并会计算电荷系的静电能 电容器的能量 电场的能量密度 电荷系的静电能 二 讨论题 1 将一个带电 q半径为RB的大导体球B移近一个半径为RA而不带电的小导体球A 试判断下列说法是否正确 并说明理由 1 B球电势高于A球 对 不带电的导体球A在带电 q的导体球B的电场中 将有感应电荷分布于表面 定性画出电场线 在静电场的电力线方向上电势逐点降低 又由图看出电场线自导体球月指向导体球A 故B球电势高于A球 2 以无限远为电势零点 A球的电势 UA 0 不对 若以无穷远处为电势零点U 0 从图可知A球的电力线伸向无穷远处 所以 UA 0 对 当r RB 必有r RA 因为A在B附近 这时可将B球看成点电荷q A球的感应电荷也可看成点电荷 而A球的感应电荷等量异号 它们在P点产生的场强大小相等方向相反 不必计算 3 带电的B球在P点的场强大小等于 r为P点距B球球心的距离 且r RB 所以 P点的场强 不一定正确 导体球B表面附近的场强虽等于 但B球表面电荷不一定是均匀分布的 若是均匀分布的 若不是均匀分布的 2 怎样能使导体净电荷为零 而其电势不为零 3 怎样使导体有过剩的正 或负 电荷 而其电势为零 4 怎样使导体有过剩的负电荷 而其电势为正 将不带电的绝缘导体 与地绝缘并与其它任何带电体绝缘 置于某电场中 则该导体有 q 0而导体的电势U 0 将不带电的导体置于负电荷 或正电荷 的电场中 再将该导体接地 然后撤除接地线 则该导体有正电荷 或负电荷 并且电势为零 将一带少量负电荷 q的导体置于另一正电荷Q Q q 的电场中 由于Q q 带负电荷的导体并未明显改变原电场 这时该导体有过剩的负电荷 而其电势为正 举例说明 则导体球电势 设正电荷Q处于O点 将带 q的导体球置于P点 导体球半径为R 如图 5 已知无限大均匀带电平板 面电荷密度为 其两侧的场强为 2 0 这个公式对于有限大的均匀带电面的两侧紧邻处的电场强度也成立 又已知静电平衡的导体表面某处面电荷密度为 在表面外紧靠该处的场强等于 0 为什么前者比后者小一半 说明之 2 0 0 2 0 6 在一个绝缘的不带电的导体球周围做一同心球面的高斯面 定性讨论将一正电荷q移向高斯面上A点的过程 1 A点处的场强大小和方向怎样变化 2 B点处的场强大小和方向怎样变化 3 过S面的电通量怎样变化 o B A q 电通量不变 7 一不接地的球形金属壳不带电 现球心处放一正电荷q1 在球壳外放一点电荷q2 问 1 q2能否感受q1的场的作用 2 q1能否感受电场力的作用 3 q1在球壳内运动 q2能否感受得到 若q1数值变化时又如何 4 若将球壳接地以上三问的答案又如何 q1 q2 1 能 2 不能 3 不能 能 1 不能 2 不能 3 都不能 4 8 如图 在电量为q的点电荷附近 有一细长的圆柱形均匀电介质棒 则由高斯定理 可算出P点的电位移矢量的大小 所以 P点场强大小为 讨论以上解法是否正确 为什么 不正确 因为自由电荷是点电荷 介质棒在该电场中极化 极化电荷分布在棒的两端面上 不是对称分布 故不能用高斯定理求出D 也求不出E 只有当自由电荷及介质分布有一定的对称性 应用高斯定理 使面积分中的能以标量形式提出来 即可求出D 另一部分高斯面上 高斯面上处处相等 再由求出E 选取高斯面S的原则 9 电介质在外电场中极化后 两端出现等量异号电荷 若把它截成两半后分开 再撤去外电场 问这两个半截的电介质上是否带电 为什么 不带电 因为从电介质极化的微观机制看有两类 非极性分子在外电场中沿电场方向产生感应电偶极矩 极性分子在外电场中其固有电偶极矩在该电场作用下沿着外电场方向取向 其在外电场中极化的宏观效果是一样的 在电介质的表面上出现的电荷是束缚电荷 这种电荷不象导体中的自由电荷那样能用传导的方法引走 当电介质被裁成两段后撤去电场 极化的电介质又恢复原状 仍各保持中性 10 同心金属球壳A和B分别带有电荷q和Q 已测得A B间电势差为V 问由A B组成的球形电容器的电容值为何 据导体静电平衡条件及高斯定理可知金属球壳B的内表面有 q电荷 外表面有电荷 Q q 由电容器定义可求 1 一绝缘导体球不带电 距球心r处放一点电荷q 求导体电势 导体为等势体 能求得球心o处的电势即可 导体上感应电荷都在球表面 距球心R 电荷守恒 解 三 计算题 2 一球形电容器内 外导体球壳A和B的半径R1和R3 两球壳间充满两层球壳形的均匀各向同性介质 1 2 两介质分层处半径R2 内球壳带电Q 外球壳接地 求 1 两介质区的电场E 2 四个界面上的束缚面电荷密度 3 电容C 1 解 R3 R2 R1 2 1 A B Q 2 3 C Q U 3 在均匀外电场处 一介质球 半径为R 相对介电常数为 r 被均匀极化 求 1 极化面电荷密度 2 极化球的内部电场 3 极化强度 4 中垂线距球心r处电场 1 2 球心处由极化电荷产生电场方向如图 3 4 等于球内电场 r r 特殊情况 连线上 正电荷右侧一点P的场强 4 带电为Q的导体薄球壳 可看成球面 半径为R 壳内中心处有点电荷q 已知球壳电势为Ua 则壳内任一点P的电势为 对不对 解 根据电势叠加原理 P点的电势为 球壳的电势为 为什么不对 原来Ua并不是Q单独存在时的电势 电势叠加 结果一样 方法二 方法三 结论是 结果相同 5 今有两个电容值均为C的电容器 其带电量分别为Q和2Q 求两电容器在并联前后总能量的变化 解 并联前 并联后 电容为2C 带电量为3Q 为什么能量减少了 能量到哪里去了 问题是 并联以后两个电容器上的电量还是原来的分布吗 求q1 q2 由 2 得 由 1 得 原来是在电量的流动过程中 电场的能量损失掉了一些 6 P97习题9 17 黄铜球浮在相对介电常数为 r 3 0的大油槽中 球的一半浸在油中 球的上半部在空气中 如图所示 已知球上净电荷为Q 2 0 10 6C 1 求球的上 下部分各有多少自由电荷 2 求下半球表面附近极化电荷的 q 因为铜球是等势体 所以可以看成是空气中的半球电容器和油为介质的半球电容器并联 1 求球的上 下部分各有多少自由电荷 解 可以解得 2 求下半球表面附近极化电荷的 q 作半球形高斯面S如图 高斯定理 此 q 即为所求 就有 可知 讨论 即把极化电荷也算上 球的上 下部分带电情况是相同的 对比 上半空间电场的分布可等效为均匀带电2Q上的整个球面在空气中的电场分布 上半球的电势为 下半空间电场的分布可等效为均匀带电2Q下的整个球面浸在油中的电场分布 即 由下半球的电势分布公式 还可以看出 下半球的电势是一样的 有 7 P95习题9 6 一绝缘导体球不带电 距球心r处放一点电荷 q 金属球半径R 求 1 金属球上感应电荷在球心处产生的电场强度及此时导体球的电势 2 若将金属球接地 球上的净电荷为何 导体为等势体 能求得球心o处的电势即可 o 解 1 如图 导体上感应电荷都在球表面 距球心R 电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论