




已阅读5页,还剩42页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Home 目录 3 2柯西 古萨基本定理 3 3柯西积分公式 3 4解析函数的高阶导数 3 1复积分的概念 第3章复变函数的积分 3 1复积分的概念 1复变函数的积分定义 定义 设函数w f z 定义在区域D内 C为区域D内起点为A终点为B的一条光滑的有向曲线 把曲线C任意分成n个弧段 设分点为 2复积分存在的一个充分条件 复积分的计算方法 一个复积分的实质是两个实二型线积分 1线性性 3复积分的性质 例题1 2 C 左半平面以原点为中心逆时针方向的单位半圆周 解 1 2 参数方程为 可见积分与路径有关 例题2 解 例如 例题3 解 可见 积分仅与起点和终点有关 而与路径无关 例题4 证明 定理1 Cauchy Goursat 如果函数f z 在单连通域D内处处解析 则它在D内任何一条封闭曲线C的积分为零 注1 定理中的曲线C可以不是简单曲线 此定理成立的条件之一是曲线C要属于区域D 3 2柯西 古萨基本定理 注2 如果曲线C是D的边界 函数f z 在D内与C上解析 即在闭区域D C上解析 甚至f z 在D内解析 在闭区域D C上连续 则f z 在边界上的积分仍然有 推论 与路径无关仅与起点和终点有关 如果函数f z 在单连通域D内处处解析 C属于D 柯西 古萨基本定理还可推广到多连通域 假设C及C1为任意两条简单闭曲线 C1在C内部 设函数f z 在C及C1所围的二连域D内解析 在边界上连续 则 定理2 复合闭路定理 证明 取 这说明解析函数沿简单闭曲线积分不因闭曲线在区域内作连续变形而改变它的值 闭路变形原理 推论 复合闭路定理 互不包含且互不相交 所围成的多连通区域 例题1 C如图所示 解 存在f z 的解析单连通域D包含曲线C 故积分与路径无关 仅与起点和终点有关 或 现设z it t从 3变化到1 例题2求 C为包含0与1的任何正向简单闭曲线 解 现分别以z 0 1为圆心 在C内作两个互不包含也互不相交的正向圆周C1与C2 练习 计算积分 解 现分别以z 1 2为圆心 在C内作两个互不包含也互不相交的正向圆周C1与C2 由复合闭路定理知 3 3柯西积分公式 若f z 在D内解析 则 分析 在上节的基础上 我们来进一步探讨如下积分 定理 柯西积分公式 如果f z 在区域D内处处解析 C为D内的任何一条正向简单闭曲线 它的内部完全含于D z0为C内的任一点 则 解析函数可用复积分表示 证 由于f z 在z0连续 任给e 0 存在d e 0 当 z z0 d时 f z f z0 e 设以z0为中心 R为半径的圆周K z z0 R全部在C的内部 且R d 从而有 例题1计算 解 因为f z cosz在复平面上解析 又 i在内 所以 例题2计算 解 方法1 因为f z sinz在复平面上解析 又 1 1均在内 所以 解 方法2 利用复合闭路定理 分别以 1 1为圆心 作两个互不相交互不包含的圆周C1 C2 练习计算 解 因为被积函数在内只有一个奇点 所以 例题3 解 一个解析函数不仅有一阶导数 而且有各高阶导数 它的值也可用函数在边界上的值通过积分来表示 这一点和实变函数完全不同 一个实变函数在某一区间上可导 它的导数在这区间上是否连续也不一定 更不要说它有高阶导数存在了 3 4解析函数的高阶导数 定理解析函数f z 的导数仍为解析函数 它的n阶导数为 其中C为在函数f z 的解析区域D内围绕z0的任何一条正向简单曲线 而且它的内部全含于D 证 设z0为D内任意一点 先证n 1的情形 即 因此就是要证 按柯西积分公式有 因此 现要证当Dz 0时I 0 而 f z 在C上连续 则有界 设界为M 则在C上有 f z M d为z0到C上各点的最短距离 则取 Dz 适当地小使其满足 Dz d 2 因此 L是C的长度 这就证得了当Dz 0时 I 0 即 再利用同样的方法去求极限 依此类推 用数学归纳法可以证明 高阶导数公式的作用 不在于通过积分来求导 而在于通过求导来求积分 例1求下列积分的值 其中C为正向圆周 z r 1 解 1 函数在C内的z 1处不解析 但cospz在C内却是处处解析的 练习 求下列积分的值 其中C为正向圆周 z 2 解 因为z 1在 z 2包围的区域D内 又f z 5z2 3z 2在复平面上解析 练习 求下列积分的值 其中C为正向圆周 z 3 2 解 由于 在 z 3 2内有两个奇点z 0 z 1 分别分别以0 1为圆心 作两个互不相交互不包含的圆周C1 C2 由复合闭路定理知 I1和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教A版高中数学选修2-1:2.4.1 抛物线的标准方程教学设计
- 化肥厂财务设备检查细则
- 房地产代理合同
- 第22课《杞人忧天》说课稿2025-2026学年统编版语文七年级上册
- 新课标人教版高中数学必修一 2.2基本初等函数-对数函数 教学设计
- 2024-2025学年高中物理 第一章 静电场 3 电场 电场强度和电场线说课稿 教科版选修3-1
- 中医期末试卷试题及答案
- 个体经营户与电商平台合作运营合同
- 时尚电子产品代言人合作合同范本及市场开发协议
- 高新科技园区车间租赁及创新成果转化合同
- 华北电力大学授予本科生学士学位名单
- 学生休学证明模板
- 机电安装工程技术标书(模板)
- 部编版小学一年级上册语文带拼音阅读练习题26篇
- 无机及分析化学第2章-化学热力学基础1
- GB/T 2930.1-2017草种子检验规程扦样
- 会计学原理模拟试题一套
- 第一章-宗教社会学的发展和主要理论范式课件
- 国内外新能源现状及发展趋势课件
- 临床常见护理技术操作常见并发症的预防与处理课件
- 高速公路改扩建桥梁拼宽施工技术及质量控制
评论
0/150
提交评论