




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中小学个性化课外辅导专家 纳思个性化辅导教案 姓名: 学科老师: 年级: 班主任: 科目: 教育咨询师: 学科带头人/教学校长签字:纳思书院个性化辅导教案年 级: 初 三 辅导科目:数学 课时数:4课 题相似三角形、等腰三角形点的存在性问题教学目的1、掌握三角形相似的性质与判定。2、掌握等腰三角形的性质与特定3,掌握分类讨论的思想教学内容一、 三角形相似的性质与判定1. 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形相似。2. 如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。3. 如果两个三角形的两组边对应成比例,并且夹角相等,那么这两个三角形相似。4. 如果两个三角形三边对应成比例,那么这两个三角形相似。5. 射影定理6. 相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径)的比等于相似比。7. 相似三角形周长比等于相似比,相似三角形的面积比等于相似比的平方。二、 相似三角形中的一些常用的基本图形1. 平行型2. 斜交型 3. 垂直型三、 等腰三角形的性质与特点1. 等边对等角。2. 三线合一。3. 等腰三角形的两底角的角平分线相等,两条腰上的高、中线相等。4. 等腰三角形的一腰上的高与底边的夹角等于顶角的一半5. 等腰三角形与底边上任意一点到两腰的距离之和等于一腰上的高四、 分类讨论的思想(一)1. 三角形相似的讨论往往从以下几个方面讨论:a,由边的对应关系的不确定性而讨论;b,由角的对应关系的不确定性而讨论。2. 对于等腰三角形点的存在性问题的讨论分为以下几种情况:a,对于底和腰不等的三角形,若条件中没有明确规定哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论;b,腰上的高在三角形内外引发的讨论。例题1直线分别交x轴、y轴于A、B两点,AOB绕点O按逆时针方向旋转90后得到COD,抛物线yax2bxc经过A、C、D三点(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由图1思考想象思路: 例2 RtABC在直角坐标系内的位置如图所示,反比例函数在第一象限内的图像与BC边交于点D(4,m),与AB边交于点E(2,n),BDE的面积为2(1)求m与n的数量关系;(2)当tanA时,求反比例函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果AEO与EFP 相似,求点P的坐标图思路: 1.如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1设梯形O1A1B1C1的面积为S,A1、 B1的坐标分别为 (x1,y1)、(x2,y2)用含S的代数式表示x2x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由 图1 图22.如图1,已知点A (-2,4) 和点B (1,0)都在抛物线上(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A,点B的对应点为B,若四边形A ABB为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB 的交点为C,试在x轴上找一个点D,使得以点B、C、D为顶点的三角形与ABC相似图1 思考想象1.如图1,抛物线经过点A(4,0)、B(1,0)、C(0,2)三点(1)求此抛物线的解析式;(2)P是抛物线上的一个动点,过P作PMx轴,垂足为M,是否存在点P,使得以A、P、M为顶点的三角形与OAC相似?若存在,请求出符合条件的 点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线是有一点D,使得DCA的面积最大,求出点D的坐标,图12.如图2,在直角坐标系xOy中,设点A(0,t),点Q(t,b)平移二次函数的图象,得到的抛物线F满足两个条件:顶点为Q;与x轴相交于B、C两点(O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询灭蚊方案
- 义务植树活动策划及方案
- 寒假声乐课程活动策划方案
- 来电咨询推广方案
- 保险咨询保险规划方案
- 大陆公司岗位绩效工资制运行管理办法
- 散装卫生巾营销方案策划
- 大学生吉他招生营销方案
- 动物保护活动策划方案
- 人工智能在教育领域应用前景
- 朝天椒栽培技术课件
- 科研伦理与学术规范-课后作业答案
- 红军长征感人红色故事3-10分钟10篇
- 斯蒂芬金英语介绍
- 秋天的雨 省赛获奖
- 集团公司石油工程专业化整合重组总体方案
- JJF 1015-2014计量器具型式评价通用规范
- GB/T 38597-2020低挥发性有机化合物含量涂料产品技术要求
- 农业科学技术政策课件
- 优秀初中语文说课课件
- DB45-T 679-2017城镇生活用水定额-(高清可复制)
评论
0/150
提交评论