




免费预览已结束,剩余26页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 1 6棱柱 棱锥 棱台和球的表面积 一 二 三 一 棱柱 棱锥 棱台的侧面积 问题思考 1 直棱柱 正棱锥 正棱台的侧面展开图分别是什么 提示 直棱柱的侧面展开图是一个矩形 正棱锥的侧面展开图是若干个全等的等腰三角形 正棱台的侧面展开图是若干个全等的等腰梯形 2 填写下表 一 二 三 一 二 三 3 斜棱柱的侧面展开图是什么 它的侧面积如何求解 提示 斜棱柱的侧面展开图是由一些平行四边形连接起来的不规则图形 它的侧面积等于各个侧面面积之和 也等于直截面 与侧棱垂直相交的截面 的周长与侧棱长的乘积 一 二 三 4 做一做 一个四棱锥的侧棱长都相等 底面是正方形 其主视图如图所示 则该四棱锥的侧面积是 解析 由题意可知该四棱锥为正四棱锥 底面边长为2 高为2 答案 B 一 二 三 二 圆柱 圆锥的侧面积 问题思考 1 圆柱 圆锥 圆台的侧面展开图是什么 提示 这三类几何体的侧面均是沿其母线割开 分别得到矩形 扇形 扇环 2 填写下表 一 二 三 3 圆台的侧面积公式如何推导 提示 圆台的侧面展开图是一个扇环 它的侧面积可以利用大扇形与小扇形面积作差推出 S圆台侧 r1 r2 l 其中r1 r2分别是圆台上 下底面圆的半径 l为圆台的侧面母线长 4 做一做 已知矩形的边长分别为1和2 若分别以这两边所在直线为轴旋转 所形成几何体的侧面积之比为 A 1 2B 1 1C 1 4D 1 3解析 以长度为1的边所在直线为轴旋转得到的圆柱的底面半径为2 母线长为1 其侧面积S1 2 2 1 4 以长度为2的边所在直线为轴旋转得到的圆柱的底面半径为1 母线长为2 其侧面积S2 2 1 2 4 故S1 S2 1 1 答案 B 一 二 三 三 球的表面积 问题思考 1 球的表面积能用展开的方法求得吗 提示 不能 球的表面积公式推导需要借助后续的知识得以解决 2 填空 S球 4 R2 R为球的半径 3 做一做 长方体的体对角线长为2 若长方体的八个顶点都在同一个球面上 则这个球的表面积是 答案 12 一 二 三 思考辨析判断下列说法是否正确 正确的在后面的括号内画 错误的画 1 侧面积公式S棱柱侧 cl 其中c为底面周长 l为棱柱侧棱长 仅适用于正棱柱 2 若圆锥的母线长为l 底面圆的半径为r 则一定有S圆锥侧 rl 3 正棱锥侧面积公式S正棱锥侧 ch 中c为底面周长 而h 为正棱锥的高 4 如果一个球的表面积变为原来的9倍 那么对应的球的半径变为原来的3倍 答案 1 2 3 4 探究一 探究二 探究三 探究四 思维辨析 棱柱 棱锥 棱台的面积问题 例1 如图所示 正四棱锥底面正方形的边长为4cm 高与斜高的夹角为30 求该正四棱锥的侧面积和表面积 思路分析 根据多面体的侧面积公式 必须求出相应多面体的底面边长和各侧面的斜高 我们可以把问题转化到三角形内加以分析求解 探究一 探究二 探究三 探究四 思维辨析 解 正四棱锥的高PO 斜高PE 底面边心距OE组成一个Rt POE 因为OE 2cm OPE 30 S正四棱锥表 S正四棱锥侧 S正四棱锥底 32 4 4 48 cm2 反思感悟对于多面体 只有直棱柱 正棱锥和正棱台可直接用公式求侧面积 其余多面体的侧面积要先把每个侧面积求出来再相加 求解时还要注意区分是求侧面积还是表面积 探究一 探究二 探究三 探究四 思维辨析 变式训练1直平行六面体ABCD A B C D 的底面是菱形 两个对角面DBB D ACC A 的面积分别为Q1 Q2 求直平行六面体的侧面积 解 如图所示 设底面边长为a 侧棱长为h 两条底面对角线的长分别为c d 即BD c AC d 探究一 探究二 探究三 探究四 思维辨析 圆柱 圆锥 圆台的面积问题 例2 圆锥的底面直径为6 高为4 则它的侧面积为 A 12 B 24 C 15 D 30解析 作圆锥轴截面如图 高AD 4 底面半径CD 3 则母线AC 5 所以S侧 3 5 15 答案 C 探究一 探究二 探究三 探究四 思维辨析 反思感悟1 圆柱 圆锥 圆台的侧面积公式 S圆柱侧 2 rl S圆锥侧 rl S圆台侧 r1 r2 l 应的圆台就转化为圆锥 而当r1 r2 r时 相应的圆台就转化为圆柱 相应的侧面积公式也随之变化 圆柱 圆锥 圆台的侧面积公式之间的变化关系为 探究一 探究二 探究三 探究四 思维辨析 2 对于圆锥还要明确如下结论 1 圆锥的侧面展开图是扇形 2 圆锥的底面周长 扇形的弧长 3 圆锥的母线长 扇形的半径 探究一 探究二 探究三 探究四 思维辨析 变式训练2已知一圆锥的侧面展开图为半圆 且面积为S 则圆锥的底面面积是 解析 如图 设圆锥底面半径为r 母线长为l 探究一 探究二 探究三 探究四 思维辨析 球的表面积 例3 1 用与球心距离为1的平面去截球 所得截面面积为 则球的表面积为 2 某几何体的三视图如图所示 则其表面积为 答案 1 8 2 3 反思感悟1 当球半径未知时 要根据已知条件求得球半径 球内的计算一般要用到轴截面及勾股定理 2 当几何体用三视图给出数据时 一定要把三视图与还原后的几何体的对应关系弄清楚 探究一 探究二 探究三 探究四 思维辨析 将本例3 2 中几何体的三视图改为如图所示的三视图 其中俯视图与左视图均为半径是2的圆 则这个几何体的表面积是多少 答案 16 探究一 探究二 探究三 探究四 思维辨析 球的切接问题 例4 已知圆台内有一表面积为144 的内切球 如果圆台的下底面与上底面半径之差为5 求圆台的表面积 解 其轴截面如图所示 设圆台的上 下底面半径分别为r1 r2 母线长为l 球半径为R 则r2 r1 5 母线l r1 r2 因为4 R2 144 所以R 6 又l2 2R 2 r2 r1 2 所以 r1 r2 2 2R 2 r2 r1 2 2 6 2 52 132 所以r1 r2 13 结合r2 r1 5得r1 4 r2 9 所以l 13 42 92 4 9 13 266 探究一 探究二 探究三 探究四 思维辨析 反思感悟对球的表面积公式的考查 通常与球的性质结合在一起 与其他多面体和旋转体组合也是考查球的表面积的一种常见方式 常见的有关球的一些性质 1 长方体的8个顶点在同一个球面上 则长方体的体对角线是球的直径 球与正方体的六个面均相切 则球的直径等于正方体的棱长 球与正方体的12条棱均相切 则球的直径是正方体的面对角线 2 球与圆柱的底面和侧面均相切 则球的直径等于圆柱的高 也等于圆柱底面圆的直径 探究一 探究二 探究三 探究四 思维辨析 变式训练3已知长方体的长 宽 高分别为2 3 6 则其外接球的表面积为 A 196 B 49 C 44 D 36 所以它的表面积为4 R2 49 故选B 答案 B 探究一 探究二 探究三 探究四 思维辨析 对几何体认识不清而致误 典例 如图所示 从底面半径为2a 高为a的圆柱中 挖去一个底面半径为a且与圆柱等高的圆锥 求圆柱的表面积S1与挖去圆锥后的几何体的表面积S2之比 探究一 探究二 探究三 探究四 思维辨析 以上解答过程中都有哪些错误 出错的原因是什么 你如何订正 你怎么防范 提示 本题中挖去圆锥的几何体的表面积去掉了一个半径为a的圆的面积 但同时增加了一个圆锥的侧面的面积 而错解未考虑到增加的部分 几何体的表面积是各个面的面积之和 防范措施求组合体的表面积时切忌直接套用柱 锥 台的表面积公式 而应先分析该几何体由几部分组成 几何体各个面间有无重叠 再结合相应几何体选择公式求解 探究一 探究二 探究三 探究四 思维辨析 变式训练已知球的两个平行截面的面积分别为5 和8 且距离为3 求这个球的表面积 解 当两截面在球心的同侧时 解法同上 当两截面在球心的异侧时 d1 d2 3 由以上解法可知 d1 d2 d1 d2 3 S球 4 R2 36 1 2 3 4 5 1 长方体的对角线长为2 长 宽 高的比为3 2 1 那么它的表面积为 A 44B 88C 64D 48解析 设长 宽 高分别为3x 2x x 则对角线长为 所以x 2 所以表面积S 2 6x2 3x2 2x2 88 答案 B 1 2 3 4 5 2 若球的大圆周长为C 则这个球的表面积是 答案 C 1 2 3 4 5 3 如图所示 一个空间几何体的主视图和左视图都是边长为1的正方形 俯视图是一个圆 那么这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托认证合同4篇
- 教育平台技术服务合同
- 汽车租赁合同租赁物特殊需求及服务协议模板
- 期刊合作合同(标准版)
- 电信光缆安装合同范本
- 保温篷布采购合同范本
- 民房真石漆施工合同范本
- 合作学校合同范本
- 体育设备采购合同范本
- 沙场用地出售合同范本
- 电力行业实施降本增效的方案
- 学生姓名贴标签贴模板(编辑打印版)
- 易制毒化学品员工培训与管理制度
- 大健康产业的未来发展方向
- 香港劳务咨询合同模板
- 2025学士学位英语考试模拟题库
- 《员工质量意识培训》课件
- 湘科版科学六年级上册全册教案(含反思)
- GB/T 44823-2024绿色矿山评价通则
- 人教版PEP小学六年级英语上册教学计划及教学进度
- 《色彩的对比》教学设计-1色彩的对比-五年级上册美术
评论
0/150
提交评论