全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
现在出发,准备好了吗?提问开始,你们都要回答。跟上节奏,启动查克拉。ARE YOU READY?LETS GO!初中数学竞赛专题 乘法公式石狮一中 黄约翰一、内容提要1 乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算除法等。2 基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。完全平方公式:(ab)2=a22ab+b2,平方差公式:(a+b)(ab)=a2b2立方和(差)公式:(ab)(a2ab+b2)=a3b33.公式的推广: 多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。 二项式定理:(ab)3=a33a2b+3ab2b3(ab)4=a44a3b+6a2b24ab3+b4)(ab)5=a55a4b+10a3b2 10a2b35ab4b5)注意观察右边展开式的项数、指数、系数、符号的规律 由平方差、立方和(差)公式引伸的公式(a+b)(a3a2b+ab2b3)=a4b4 (a+b)(a4a3b+a2b2ab3+b4)=a5+b5(a+b)(a5a4b+a3b2a2b3+ab4b5)=a6b6 注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n1a2n2b+a2n3b2ab2n2b2n1)=a2nb2n(a+b)(a2na2n1b+a2n2b2ab2n1+b2n)=a2n+1+b2n+1类似地:(ab)(an1+an2b+an3b2+abn2+bn1)=anbn4. 公式的变形及其逆运算由(a+b)2=a2+2ab+b2 得 a2+b2=(a+b)22ab由 (a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得 a3+b3=(a+b)33ab(a+b)5. 由公式的推广可知:当n为正整数时anbn能被(ab)整除, a2n+1+b2n+1能被(a+b)整除,a2nb2n能被(a+b)及(ab)整除。1.填空:a2+b2=(a+b)2_ _ (a+b)2=(ab)2+_ _ a3+b3=(a+b)33ab( _) a4+b4=(a2+b2)2_ _ a5+b5=(a+b)(a4+b4)_ _ a5+b5=(a2+b2)(a3+b3)_ _ 2.填空:(x+y)(_ _ _)=x4y4 (xy)(_ _)=x4y4(x+y)( _ _)=x5+y5 (xy)(_ _)=x5y53.口算:552= 652= 752= 852= 952=4. 计算下列各题 ,你发现什么规律1119= 2228= 3436= 4347= 7674=5.已知两个连续奇数的平方差为2000,则这两个连续奇数可以是 。6.已知,那么= 。7.计算:= 。8.已知满足,则代数式= 。9.已知,则= 。10.已知,则代数式= 。11.若,则= 。12.若,则的个位数是 。13. ,则= 。14.如果正整数满足方程,则这样的正整数对的个数是 。15已知,则= 。16.计算:17.已知x+=3, 求x2+ x3+ x4+的值18.化简:(a+b)2(ab)2 (a+b)(a2ab+b2) (ab)(a+b)32ab(a2b2) (a+b+c)(a+bc)(ab+c)(a+b+c)19.己知a+b=1,求证:a3+b33ab=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论