同方专转本冲刺班数学习题训练五至八.doc_第1页
同方专转本冲刺班数学习题训练五至八.doc_第2页
同方专转本冲刺班数学习题训练五至八.doc_第3页
同方专转本冲刺班数学习题训练五至八.doc_第4页
同方专转本冲刺班数学习题训练五至八.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专业精神 诚信教育 同方专转本高等数学内部教材 严禁翻印第五讲:微分中值定理与导数的应用的强化练习题答案一、单项选择题(每小题4分,共24分)1、已知,则有 (B)A一个实根 B两个实根 C 三个实根 D无实根 解:(1)在满足罗尔定理条件故有()综上所述,少有两个实根,至多有两个根,故选 2下列函数在所给区间满足罗尔定理条件的是 (D)ABCD解:,满足罗尔定理条件故选 D3设曲线,则其拐点坐标为(C)A0 B(0,1)C(0,0)D1解:令得当时,故(0,0)为曲线的拐点 C4若内必有(C)ABCD解:凹弧如示意图,故有5设 在取得极值。则为()A BC D解: 得得答案选6下列命题中正确的是-(B)A 为极值点,则必有B 若在点 处可导,且 为 的极值点,则必有C 若在()有极大值也有极小值则极大值必大于极小值。D 若则点必有的极值点。解:可导函数的极值点一定是驻点,故有=0 选B二、填空题(每小题4分,共24分)7设可导,且的极小值。则解:原式=8的单调增加区间为解:(1)定义域(2)当0x0)(2) ;令驻点0,为极大值点.由单峰原理:是最大值点最大值且, 故与轴有且仅有两个交点(如示意图)即在有且只有两个实根.三、 应用题(每小题10分,共50分)14已知曲线.(1)求曲线在横坐标为的点处的切线方程.(2)求曲线的切线被两坐标轴所截线段的最短长度.解:(1)求切线方程:切点切线方程:即(2)令令(3)令(4)最小值15在半径为R的半径内作一个圆柱体,求最大体积时的底半径与高.解:(1)画出示意图 (2)依题意,设所求圆柱体体积为V(3)求驻点,令,驻点(4)求最值点:,为最大值点答:当,时,所得圆柱体体积最大16某客轮每小时消耗燃料的费用速度的立方正比,若该客轮从甲城到已城沿江逆流而上,设水流速度为每小时公里,求客轮最经济的速度?解:(1)列出函数关系式:设从甲城沿江到乙城的路程为.消耗总费用为.依题意:,其中是甲城到乙城所需要的时间(2)求驻点: 令,驻点(3)求最值:由实际问题的意义知道:最小值存在,且驻点唯一,当时,客轮消耗燃料总费用最省.17欲做一个容积是3000的无盖圆柱形的蓄水池,已知池底单位面积造价为池壁单位面积的3倍,问蓄水池的尺寸怎样设计,才能使总造价最低?解:(1)列出函数关系式:设池底半径为,池高为,池壁单位面积造价为元,总造价为,依题意:(2) 求驻点:令,驻点(3) 求最值:,当时,总造价最省.(4) 当时,答:当时,总造价最低.18从一块半径为R的圆铁片上挖去一个扇形,把留下的中心角为取多大时,做成的漏斗的容积最大? 解:(1)列出函数关系式:设漏斗体积为V依题意:, ,(2) 求驻点令=0.,驻点又(3) 求最值由实际问题意义知道:漏斗最大容积存在,且驻点唯一,当时,漏斗的容积最大.第七讲:不定积分的概念与换元积分法的强化练习题答案一、单项选择题(每小题4分,共24分)1设是在上的一个原函数,且为奇函数,则是 ( )A 偶函数 B 奇函数C 非奇非偶函数 D不能确定解:可导奇函数的导函数必为偶函数.必为偶函数.选A2已知的一个原函数为,的一个原函数为,则的一个原函数为 ( )A B C D 解:(1),(2) 选B3设为连续导函数,则下列命题正确的是 ( )A B C D 解:选A 4设且 ,则=( )A B C D 解:(1) (2)且得,选A5设是的一个原函数,则 ( )A BC D 解:(1)原式=(2)(3) 原式= 选D6设,则=( )A B C D 解:(1)(2)(3)原式= 选C二、填空题7若是的一个原函数,则 = 解:(1)(2) 8设的一个原函数为 ,则 解:故 9若,则= 解: 原式=10 解:原式=或11若,则 解:原式=12若,则 解:三、计算题13 解:原式=14 解:原式=15 解:原式= 16 解:原式=17 解:原式=18 解:令原式=19解:令原式=20 解:令原式=四、综合题(每小题10分,共20分)21 解:(倒代换)令原式=(注:(三角代换)令,原式=)22 解:令 原式=五、 证明题(每小题9分,共18分)23设是 的一个原函数,且,证明: 证:,由,得24设是的一个原函数,是的一个原函数且证明:或证:(1)(2)讨论,若,即 由,得故有若,即,由,得故有 证毕选做题1解:原式=选做题2解:原式=选做题3解:原式=第八讲:不定积分的分部积分法等的强化练习题答案一、单项选择题(每小题4分,共24分)1设是的一个原函数,则( )A B C D 解:原式=选A2若的一个原函数为,则( )A BC D 解: 选C3设,则 =( )A BC D解:(1) (2)选B4= ( )A B C D解: 原式= 选C5 ( )A B C D 解: 原式=选B 6 ( )A B C D 解: 原式选C 二、填空题(每小题4分,共24分)7= 解: 原式8 解: 原式9= 解: 原式10 若,则= 解:(1) (2)11 解: 原式=12 解: 原式= 三、计算题(每小题8分,共64分)13.解:原式=14解:原式=15解:原式=16.解:原式=17 解: 原式=18 解: 原式=319 解: 原式20 解:(1),令,5A=3,令,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论