三角函数全公式.doc_第1页
三角函数全公式.doc_第2页
三角函数全公式.doc_第3页
三角函数全公式.doc_第4页
三角函数全公式.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基本公式特殊角的三角函数 角度弧度制sincostancot00010无意义30 61/23/23/3345 42/22/2116033/21/233/390210无意义0180 0-10无意义27032-10无意义03602010无意义同角三角函数关系式 平方关系sin2()+cos2()=1 cos(2a)=cos2(a)-sin2(a)=1- 2sin2(a)=2cos2(a)-1 sin(2a)=2sin(a)cos(a) tan2()+1=1/cos2() 2sin2(a)=1-cos(2a) cot2()+1=1/sin2(a) 积的关系sin=tancos cos=cotsin tan=sinsec cot=coscsc sec=tancsc csc=seccot倒数关系tan cot1 sin csc1 cos sec1商的关系sin/costansec/csc cos/sincotcsc/sec 三角函数直角三角 三角函数形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, 对称性 180度-的终边和的终边关于y轴对称。 -的终边和的终边关于x轴对称。 180度+的终边和的终边关于原点对称。 90度-的终边和的终边关于y=x对称。 诱导公式 公式一: 设为任意角,终边相同的角的同一三角函数的值相等 k是整数sin(2k)sin cos(2k)cos tan(2k)tan cot(2k)cot 公式二: 设为任意角,+的三角函数值与的三角函数值之间的关系sin()sin cos()cos tan()tan cot()cot 公式三: 任意角与 -的三角函数值之间的关系sin()sin cos()cos tan()tan cot()cot 公式四: 利用公式二和公式三可以得到-与的三角函数值之间的关系sin()sin cos()cos tan()tan cot()cot 公式五: 利用公式一和公式三可以得到2-与的三角函数值之间的关系sin(2)sin cos(2)cos tan(2)tan cot(2)cot公式六: /2及3/2与的三角函数值之间的关系sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(/2)cos cos(/2)sin tan(/2)cot cot(/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan sin(3/2)cos cos(3/2)sin tan(3/2)cot cot(3/2)tan诱导公式的表格以及推导方法(定名法则和定号法则) sincostancotseccsc2k+sincostancotseccsc(1/2)k-cossincottancscsec(1/2)k+cos-sin-cot-tan-cscseck-sin-cos-tan-cot-seccsck+-sin-costancot-sec-csc(3/2)k-cos-sincottan-csc-sec(3/2)k+-cossin-cot-tancsc-sec2k-sincos-tan-cotsec-csc-sincos-tan-cotsec-csc定名法则 90的奇数倍+的三角函数,其绝对值与三角函数的绝对值互为余函数。90的偶数倍+的三角函数与的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变” 定号法则 将看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”.(或为“奇变偶不变,符号看象限” 2在K/中如果K为奇数时函数名不变,若为偶数时函数名变为相反的函数名。正负号看原函数中所在象限的正负号。关于正负号有可口诀;一全二正弦,三切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。) 比如:90+。定名:90是90的奇数倍,所以应取余函数;定号:将看做锐角,那么90+是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90+)=cos , cos(90+)-sin 这个非常神奇,屡试不爽 还有一个口诀“纵变横不变,符号看象限”,例如:sin(90+),90的终边在纵轴上,所以函数名变为相反的函数名,即cos,将看做锐角,那么90+是第二象限角,第二象限角的正弦为正,所以sin(90+)=cos 两角和与差的三角函数cos(+)=coscos-sinsin cos(-)=coscos+sinsin sin()=sincoscossin tan(+)=(tan+tan)/(1-tantan) tan(-)=(tan-tan)/(1+tantan) 和差化积公式sin+sin=2sin(+)/2cos(-)/2 sin-sin=2cos(+)/2sin(-)/2 cos+cos=2cos(+)/2cos(-)/2 cos-cos=-2sin(+)/2sin(-)/2 积化和差公式sincos=(1/2)sin(+)+sin(-) cossin=(1/2)sin(+)-sin(-) coscos=(1/2)cos(+)+cos(-) sinsin=-(1/2)cos(+)-cos(-) 倍角公式sin(2)=2sincos=2/(tan+cot) cos(2)=(cos)2-(sin)2=2(cos)2-1=1-2(sin)2 tan(2)=2tan/(1-tan2) cot(2)=(cot2-1)/(2cot) sec(2)=sec2/(1-tan2) csc(2)=1/2*seccsc 三倍角公式sin(3) = 3sin-4sin3 = 4sinsin(60+)sin(60-) cos(3) = 4cos3-3cos = 4coscos(60+)cos(60-) tan(3) = (3tan-tan3)/(1-3tan2) = tantan(/3+)tan(/3-) cot(3)=(cot3-3cot)/(3cot2-1) n倍角公式sin(n)=ncos(n-1)sin-C(n,3)cos(n-3)sin3+C(n,5)cos(n-5)sin5- cos(n)=cosn-C(n,2)cos(n-2)sin2+C(n,4)cos(n-4)sin4- 半角公式sin(/2)=(1-cos)/2) cos(/2)=(1+cos)/2) tan(/2)=(1-cos)/(1+cos)=sin/(1+cos)=(1-cos)/sin cot(/2)=(1+cos)/(1-cos)=(1+cos)/sin=sin/(1-cos) sec(/2)=(2sec/(sec+1) csc(/2)=(2sec/(sec-1) 辅助角公式Asin+Bcos=(A2+B2)sin(+arctan(B/A) Asin+Bcos=(A2+B2)cos(-arctan(A/B) 万能公式sin(a)= (2tan(a/2)/(1+tan2(a/2) cos(a)= (1-tan2(a/2)/(1+tan2(a/2) tan(a)= (2tan(a/2)/(1-tan2(a/2) 降幂公式sin2=(1-cos(2)/2=versin(2)/2 cos2=(1+cos(2)/2=covers(2)/2 tan2=(1-cos(2)/(1+cos(2) 三角和的三角函数sin(+)=sincoscos+cossincos+coscossin-sinsinsin cos(+)=coscoscos-cossinsin-sincossin-sinsincos tan(+)=(tan+tan+tan-tantantan)/(1-tantan-tantan-tantan) 其它公式1+sin(a)=(sin(a/2)+cos(a/2)2 1-sin(a)=(sin(a/2)-cos(a/2)2 csc(a)=1/sin(a) sec(a)=1/cos(a) cos30=sin60 sin30=cos60 推导公式tan+cot=2/sin2 tan-cot=-2cot2 1+cos2=2cos2 1-cos2=2sin2 1+sin=sin(/2)+cos(/2)2 其他及证明sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+.+cosnx= sin(n+1)x+sinnx-sinx/2sinx 证明: 左边=2sinx(cosx+cos2x+.+cosnx)/2sinx =sin2x-0+sin3x-sinx+sin4x-sin2x+.+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x/2sinx (积化和差) =sin(n+1)x+sinnx-sinx/2sinx=右边 等式得证 sinx+sin2x+.+sinnx= - cos(n+1)x+cosnx-cosx-1/2sinx 证明: 左边=-2sinxsinx+sin2x+.+sinnx/(-2sinx) =cos2x-cos0+cos3x-cosx+.+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x/(-2sinx) =- cos(n+1)x+cosnx-cosx-1/2sinx=右边 等式得证 三倍角公式推导 sin3a =sin(2a+a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos2a)cosa =4cos3a-3cosa sin3a=3sina-4sin3a =4sina(3/4-sin2a) =4sina(3/2)2-sin2a =4sina(sin260-sin2a) =4sina(sin60+sina)(sin60-sina) =4sina*2sin(60+a)/2cos(60-a)/2*2sin(60-a)/2cos(60+a)/2 =4sinasin(60+a)sin(60-a) cos3a=4cos3a-3cosa =4cosa(cos2a-3/4) =4cosacos2a-(3/2)2 =4cosa(cos2a-cos230)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论