




免费预览已结束,剩余9页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
正弦、余弦函数的对称性一 复习1.函数的图像关于直线对称等价于2. 函数的图像关于直线对称等价于二研究的对称性探索: 你能用诱导公式说明关于原点和对称,关于直线对称吗?(提示:如可用说明关于点对称)总结:1.正弦函数的对称中心是,对称轴是直线;余弦函数的对称中心是,对称轴是直线(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴的直线,对称中心为图象与轴(中轴线)的交点).2.函数的对称性(1)关于直线对称,(2)的对称中心为图象与轴(中轴线)的交点,说明:是奇函数 ,是偶函数 的对称中心为图象与直线的交点,三例题、练习题:1. (07福建文5)函数的图象()关于点对称关于直线对称关于点对称关于直线对称2. (安徽文15)函数的图象为,如下结论中正确的是_(写出所有正确结论的编号)图象关于直线对称;图象关于点对称;函数在区间内是增函数;由的图角向右平移个单位长度可以得到图象3函数的图象向右平移()个单位,得到的图象关于直线对称,则的最小值为 ( ) 以上都不对4.(2009全国卷文)如果函数的图像关于点中心对称,那么的最小值为A. B. C. D. 5.(2009青岛一模)设函数,则下列结论正确的是 ( ) A的图像关于直线对称 B满足 C把的图像向左平移个单位,得到一个偶函数的图像 D的最小正周期为,且在上为增函数10已知函数满足,设则= 课标要求了解函数对称性、周期性的概念,能应用对称、周期的概念解决问题。考点回顾1.函数图象本身的对称性(自身对称)1、 的图象关于直线对称。2、的图象关于直线对称。3、的图象关于直线对称。4、 的图象关于直线对称。5、的图象关于点对称。6、的图象关于点对称。7、的图象关于点对称。8、的图象关于点对称。2.两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)1、函数与图象关于直线对称。2、函数与图象关于直线对称3、函数与图象关于直线对称4、函数与图象关于直线对称即直线对称5、函数与图象关于X轴对称。6、函数与图象关于Y轴对称。7、函数与图象关于原点对称3.函数的周期性1、 的周期为2、 的周期为3、 的周期为4、 的周期为5、 的周期为6、的周期为7、的周期为8、的周期为9、 的周期为10、有两条对称轴和( 周期11、有两个对称中心和 周期12、有一条对称轴和一个对称中心周期13、奇函数满足 周期。14、偶函数满足 周期。例题讲解题型一:对称性、周期性的证明例1.设曲线的方程是,将沿轴、轴正方向分别平移、个单位长度后得到曲线,(1)写出曲线的方程;(2)证明曲线与关于点对称;(3)如果曲线与有且仅有一个公共点,证明:解:(1)曲线的方程为;(2)证明:在曲线上任意取一点,设是关于点的对称点,则有,代入曲线的方程,得的方程: 即可知点在曲线上 反过来,同样证明,在曲线上的点的对称点在曲线上 因此,曲线与关于点对称(3)证明:因为曲线与有且仅有一个公共点, 方程组有且仅有一组解, 消去,整理得,这个关于的一元二次方程有且仅有一个根, ,即得, 因为,所以例2.已知函数y=f(x)=.(1)证明这个函数为偶函数;(2)证明T=是函数的一个周期,进而寻找函数是否有其他的周期,最后说明这个函数的周期组成什么集合.解:(1)对任意实数x,x与-x同为有理数或无理数,所以恒有f(x)=f(-x),又定义域关于原点对称,函数为偶函数;(2)当T=时,对任意实数x,x与x+同为有理数或无理数,所以恒有f(x)=f(x+),所以T=是函数的周期;当T为有理数时,对任意实数x以及有理数T,x与x+T同为有理数或无理数,所以恒有f(x)=f(x+T),所以T是函数的周期;当T为无理数时,f(-T)=0,f(-T+T)=f(0)=1,所以T不是函数的周期,函数的所有周期组成有理数集合题型二:利用函数的周期性与对称性例3.已知函数是定义在R上的周期函数,周期,函数是奇函数又知在0,1上是一次函数,在1,4上是二次函数,且在时函数取得最小值-5证明:;求的解析式;求在上的解析式解:是以为周期的周期函数,又是奇函数,当时,由题意可设,由得,是奇函数,又知在上是一次函数,可设,而,当时,从而当时,故时,当时,有,当时,例4.已知函数的图象与的图象关于点对称。(1)求的值;(2)解.(1)设P(x,y)是h(x)图像上的一点,点P关于A(0,1)的对称点为Q(x0,y0),则x0=,y0=2.,即,从而. (2),.即 令,当时, . 方法归纳:1.证明函数的对称性、周期性注重定义的使用2.注意对称性、周期性与奇偶性、单调性的综合运用,解题时注重数形结合思想的运用。实战训练1定义在R上的函数不是常数函数,满足,则函数(B)A是奇函数也是周期函数B是偶函数也是周期函数C是奇函数但不是周期函数D是偶函数但不是周期函数解析:由,知,所以以2为周期,再由得,令,则有,是偶函数故是偶函数也是周期函数2、的定义在R上的奇函数,它的最小正周期为T,则的值为(A)A0BCTD3、设为奇函数,对任意,则等于(A)A3B3C4D44、已知函数为偶函数,上是单调减函数,则(A) ABCD5.设f(x)(xR)为偶函数,且f(x)=f(x+)恒成立,x2,3时,f(x)=x,则x2,0时,f(x)等于A.|x+4| B.|2x| C.3|x+1| D.2+|x+1|解析:根据y=f(x)以2为周期,画出函数图象可得出结论. 答案:C7.已知f(x)是定义在R上的奇函数,且f(x+4)=f(x)对任意xR成立,如果当x0,1时,f(x)=2x,则f()的值是A.23B.C.D.解析:利用f(x)=f(x),以及f(x)以4为周期可求出.答案:B8.若函数y=f(x)(R)满足f(x+2)=f(x),且x(-1,1)时,f(x)=|x|,则函数y=f(x)的图象与函数y=log4|x|图象的交点的个数为 CA.3B.4C.6D.8解析:函数f(x)以2为周期,画出f(x)的图象,数形结合.9.函数y=f(x+1)与y=f(1x)的图象关于A.y轴对称B.原点对称C.直线x=1对称D.关于y轴对称且关于直线x=1对称解析:根据对称关系验证A正确,选A.10、已知f(x)是定义在R上的奇函数,且满足,则使的值等于(A)ABCD11定义在R上的函数,时,(C)ABCD12定义在上的函数,其图象关于点对称,且,则(A)A1B0C-1 D-213已知函数f(x)的反函数f1(x)的图象的对称中心为 (1,5),则实数a的值是(D)A3B1C5D714.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_直线x=1_对称.15.定义在(,+)上的偶函数f(x)满足f(x+1)=f(x),且在1,0上是增函数,下面是关于f(x)的判断:f(x)是周期函数;f(x)的图象关于直线x=1对称;f(x)在0,1上是增函数;f(x)在1,2上是减函数;f(2)=f(0).其中正确的判断是_(把你认为正确的判断都填上). 16.对于定义在R上的函数f(x),有下述命题: 若f(x)是奇函数,则f(x-1)的图象关于点A(1,0)对称 若对xR,有f(x+1)=f(x-1),则,f(x)的图象关于直线x=1对称 若函数f(x-1)的图象关于直线x=1对称,则f(x)为偶函数 函数f(1+x)与函数f(1-x)的图象关于直线x=1对称 其中正确命题的序号为_.17对于定义域为R的非常值函数f(x),请将下面左侧中每个f(x)满足的条件与右侧所提供的f(x)的性质中一个用线连接起来18.已知函数f(x)的定义域为x| x k,k Z,且对于定义域内的任何x、y,有f(x-y) =成立,且f(a) = 1(a为正常数),当0 x 0(1) 判断f(x)奇偶性;(2) 证明f(x)为周期函数;(3) 求f (x)在2a,3a 上的最小值和最大值证明:(1) 定义域x| x k,kZ 关于原点对称,又f(-x) = f (a-x) -a= = = = = -f (x),对于定义域内的每个x值都成立 f (x)为奇函数(2) 易证:f(x+ 4a) = f(x),周期为4a(3) f (2a) = f (a + a) = f a-(-a)= = = 0,f (3a) = f (2a + a) = f 2a-(-a)= = = -1先证明f (x)在2a,3a上单调递减为此,必须证明x(2a,3a) 时,f (x) 0, 设2a x 3a,则0 x- 2a 0, f (x) 0 设2a x1 x2 3a,则0 x2-x1 a,f (x1) 0 f (x2) 0,f (x1) -f (x2)= 0,f (x1) f (x2),f (x)在2a,3a上单调递减f (x)在2a,3a上的最大值为f (2a) = 0,最小值为f (3a) = - 119.设f(x)的定义域为xR且x,kZ,且f(x+1)=,如果f(x)为奇函数,当0x时,f(x)=3x.(1)求f();(2)当2k+x2k+1(kZ)时,求f(x);(3)是否存在这样的正整数k,使得当2k+xx2kx2k有解?解:(1)f(x+2)=f(x),f(x)是周期为2的周期函数. (2)2k+x2k+1,kZ,x2k1,x2k10,02k+1xx2kx2k,x2k1x2kx2k,x2(k+1)x+11且kZ时但是x.若k=1,则=0,(*)无解.不存在满足条件的整数k. 20.已知函数,若函数图象上任意一点P关于原点的对称点Q的轨迹恰好是函数的图象.(1)写出函数的解析式;(2)当时,总有成立,求实数的取值范围.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CCOA 29-2020芝麻油感官评价
- T/CCMA 0187-2024纯电动液压挖掘机动态噪声试验方法
- T/CCAS 032-2023油井水泥石抗二氧化碳侵蚀试验方法
- T/CBMCA 037-2023混凝土电缆沟盖板
- T/CAQI 48-2018家用和类似用途节水型反渗透净水器
- 2024年度江苏省二级注册建筑师之法律法规经济与施工考试题库
- 翻译测评面试题及答案
- 船舶员工考试题及答案
- 工商模拟面试题及答案
- 联谊晚会创意主题策划方案
- 2025届湖南省邵阳市高三下学期第三次联考数学试卷(含答案)
- 浙江省强基联盟2024-2025学年高一下学期5月月考数学试题(含答案)
- 2025年北京市朝阳区高三二模考试语文试卷(含答案)
- 2025年安徽省合肥市(合肥一中)三模(五月)生物试卷及答案
- 2025年中考第一次模拟考试卷:生物(广西卷)(解析版)
- 2025年公路水运工程重大事故隐患判定标准深度解析
- 2025届江西省上饶市高三下学期二模英语试题(原卷版+解析版)
- 《ISO 37001-2025反贿赂管理体系要求及使用指南》专业解读和应用培训指导材料之7:9绩效评价(雷泽佳编制-2025A0)
- 湖北省武汉市2025年高三3月份模拟考试英语试题含答案
- 机动车检测维修专业技术人员职业资格2024年笔试考试模拟题
- 钢结构吊装监理实施细则
评论
0/150
提交评论