




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
图案设计:懒洋洋的狮子图案简介:本人所设计的图案为“懒洋洋的狮子”,其主要由椭圆,圆弧和通过指定点的样条曲线组成,其中狮子身上的线条主要是用了样条曲线构画。狮子的头由椭圆构成,眼睛和鼻子、嘴巴都是用圆和圆弧构成,相较于其它数学图形的组合而成的狮子,本人主要用圆和圆弧的目的在于凸显标题中的“懒洋洋”,让人感觉狮子的眼睛是闭着的,一看就是一副慵懒的模样,而不画其胡子也意在于此。心得体会:通过运用超级画板画狮子,彻底改变了以前的观念,认识到许多数学图形同样可以构建出自己想要的图形及效果,关键在于自己要用心去思考,花心思去琢磨。对于许多美术卡通动物图形并不局限于只能用实实在在的画笔才能画,超级画板同样可以代劳,其效果也并不亚于前者,而且在适当的时候能通过动画,使卡通动物运动起来,顿然使之活灵活现,这相对于平面图形而言,有一定的优势。在绘制自己所需图案的过程中,需要耐心地去摸索超级画板有哪些功能,和这些功能能到达怎样的效果。在这个探索的过程,更有助于自己对超级画板的了解和掌握。比如狮子头上的毛和身上的线条都是由不规则的曲线构成,而这些线条先由一些点勾勒出来,再将这些点全选中,构建一个多边形,并将这个多边形的属性改为样条曲线并将不需要的点线隐藏,即可得到所需曲线。论文:椭圆与双曲线的对偶性质摘要:在椭圆与双曲线的众多性质中,两者的许多性质存在对偶关系,其中由曲线两焦点和曲线上一点构成的的三角形的面积公式就有着相似之处关键词:椭圆 双曲线 面积公式 对偶性质 焦点 不变正文: 在高中数学中,椭圆与双曲线是圆锥曲线这个知识板块中的重要内容,也是高考必考的一个热点,因此要求我们在掌握其定义概念及基本性质的基础上,进一步去探究其性质并探究它们之间的联系或是性质的相似之处,以便更全方位地、更深刻地去掌握椭圆与双曲线的本质,并能灵活地运用。在椭圆与双曲线的众多经典结论中,它们有许多性质存在着对偶关系,比如说若点在椭圆(ab0)外,则过点作椭圆的两条切线切点为,,则切点弦的直线方程是和点在双曲线外,则过点作双曲线的两条切线,切点为,,则切点弦的直线方程是,两条直线方程极为相似。诸如此类的结论为数不少,在此我就不一一列举了,在高考中涉及到椭圆、双曲线的焦点三角形问题很多,在这些问题中有一类与面积有关,如果我们能合理而又灵活地运用椭圆、双曲线的焦点三角形的面积公式,在解决一类有关问题时,可避免冗长的推理和运算,大大降低难度,使解题过程简捷而明了。现在,让我们来探究一下由椭圆两个焦点和椭圆上的一点构成的三角形的面积公式,以及由此能否得出双曲线两个焦点和双曲线上的一点构成的三角形的面积公式。 图中A,B分别为椭圆的左焦点和右焦点,C为椭圆上与A,B不共线的任意一点,2a,2b分别为长轴长和短轴长,2c为焦点距,求由A,B,C构成的三角形的面积,我们不妨设椭圆的方程为,令|AC|=m, |BC|=n, m +n=2a,在中,由余弦定理得.也即,又再由正弦定理的三角形面积公式与上述两式联合化简解得,由这个面积公式的推导过程可以看出有点繁琐,而是否对于一切的b都成立,我们就需要找一种既直观有可靠的方法进行检验。现在我们尝试运用超级画板进行验证,先做出椭圆曲线,两焦点和椭圆上与两焦点不共线的任意一点,就如上图,进而我们通过做点c的动画,以此来观察c点运动时是否变化。测量ACB的度数和三角形ABC的面积,及的值,并将的比值,如进而通过作a, b的变量尺来控制a,b的变化。执行c的动画按钮,我们可以看到当点c在椭圆上运动时,上图中前三个量不断变化,而的比值始终为1,这说明在椭圆曲线确定时,我们在前面推导的面积公式是始终成立的,当我们通过变量尺改变a,b的值时,我们发现在ab0时,也始终保持不变,其值为1.当ba0时,的比值随着b的值而变化,若将中的换成,其比值保持1不变,这说明中的b代表的是椭圆的虚轴,而在具体的椭圆方程中,我们必须分清实轴和虚轴,而不是一味代公式,往往很多学生在做题时没有注意到这边,也往往会在这个细节上出错,而我们在教学中利用超级画板辅以动态图形结合讲授,便使a, b变化及点C运动时这几种情况下面积公式是否成立显得更为简单直观,且便于理解,也为传统教学注入新的血脉。双曲线方程在形式上与椭圆方程有一定的相似性,所以我们有这样一个问题:双曲线是否也有相似的性质,上述面积公式是否对于双曲线也成立?在超级画板中,我们将椭圆的属性对话框打开,将中的加号改为减号,即将曲线变为双曲线,当点C运动或改变a, b的值时,都随之变化,此时并不成立,由椭圆与双曲线的其它对偶性质的启示,我们将面积公式中的tan改成cot,此时发现对于曲线 当点C运动或改变a, b的值时随之而变化,而始终保持不变,这说明对于双曲线由两焦点和其上与焦点不共线的任意一点所构成的三角形面积公式为,其在形式上与椭圆的三角形面积极为相似,我们称之为对偶性质。此外,我们通过a, b的变量尺改变其a, b的值发现,无论a,b为何值,始终不变,这一点似乎与椭圆有所不同,但其本质是不变的,此处的b也是代表虚轴,在椭圆当ba0时,虚轴就由b变为a,而对于双曲线无论a, b如何变化,b始终为虚轴,所以在面积公式中b代表的是虚轴,这就要求我们在运用此公式时需要注意分清楚曲线的实轴和虚轴,以免出错。相较于按传统方法直接推理双曲线焦点及曲线上一点构成三角形面积的公式,利用超级画板将椭圆属性改变即变为双曲线,进而轻轻松松探讨并类比
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新能源光伏电站运维管理实操考试题及答案
- 2025年广东特殊食品生产考试题及详细解析附答案
- 2025年中国特种聚合物项目商业计划书
- 2025年注册会计师(CPA)考试 会计科目重点内容冲刺模拟试卷
- 2025年无人机测绘项目可行性研究报告
- 2025年三级企业人力资源管理师考试(理论知识)全真冲刺试题及答案一
- 乐器选择与掌握
- 2025年价格鉴证师职业能力水平评价考试(经济学和价格学基本理论)考前冲刺试题及答案四
- 车间级安全教育培训考试题及答案
- 2025年中国克拉霉素胶囊产业竞争格局研究报告
- 商品混凝土公司安全生产标准化管理体系方案资料汇编(2019-2020新标准实施模板)
- 2024年四川省公务员录用考试《行测》试题(网友回忆版)(题目及答案解析)
- 新标准大学英语视听说教程(二)听力原文
- 卫健委健康科普宣传员职责
- 《居住区供配电设施建设规范》
- 湖北自考18969《沟通与项目管理》复习要点资料(武汉大学出版社-徐莉主编)
- 简明儿童少年国际神经精神访谈父母版培训考核附有答案
- 初中英语课堂惩罚小游戏1++课件
- 如何有效建立危化品管理中的安全风险管控体系
- 传染病科工作中的舆情管理与危机应对
- 中国传统民居建筑.课件
评论
0/150
提交评论