2011年高考数学试题分类汇编__.doc_第1页
2011年高考数学试题分类汇编__.doc_第2页
2011年高考数学试题分类汇编__.doc_第3页
2011年高考数学试题分类汇编__.doc_第4页
2011年高考数学试题分类汇编__.doc_第5页
已阅读5页,还剩164页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2011年高考数学试题分类汇编一、集合与常用逻辑用语一、选择题1(重庆理2)“”是“”的 A充分而不必要条件B必要而不充分条件C充要条件 D既不充分也不必要【答案】A2(天津理2)设则“且”是“”的A充分而不必要条件B必要而不充分条件C充分必要条件D即不充分也不必要条件【答案】A3(浙江理7)若为实数,则“”是的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【答案】A4(四川理5)函数,在点处有定义是在点处连续的 A充分而不必要的条件B必要而不充分的条件C要条件D既不充分也不必要的条件【答案】B【解析】连续必定有定义,有定义不一定连续。5(陕西理1)设是向量,命题“若,则= ”的逆命题是 A若,则 B若,则C若,则D若=,则= - 答案】D6(陕西理7)设集合M=y|y=xx|,xR,N=x|x|0,知在R上恒成立,因此由此并结合,知88.(北京理18)已知函数.(1)求的单调区间;(2)若对,都有,求的取值范围。解:(1),令得当时,在和上递增,在上递减;当时,在和上递减,在上递增(2) 当时,;所以不可能对,都有;当时有(1)知在上的最大值为,所以对,都有即,故对,都有时,的取值范围为。8990.(福建理18)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克() 求的值;() 若该商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大解:()因为时,所以;()由()知该商品每日的销售量,所以商场每日销售该商品所获得的利润:;,令得函数在上递增,在上递减,所以当时函数取得最大值答:当销售价格时,商场每日销售该商品所获得的利润最大,最大值为42.94.(湖北理17)提高过江大桥的车辆通行能力可改善整个城市的交通状况在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时研究表明:当时,车流速度是车流密度的一次函数()当时,求函数的表达式;()当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值(精确到1辆/小时)本题主要考查函数、最值等基础知识,同时考查运用数学知识解决实际问题的能力.解析:()由题意:当时,;当时,设,显然在是减函数,由已知得,解得故函数的表达式为=()依题意并由()可得当时,为增函数,故当时,其最大值为;当时,当且仅当,即时,等号成立所以,当时,在区间上取得最大值综上,当时,在区间上取得最大值,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时95.(湖北理21)()已知函数,求函数的最大值;()设,均为正数,证明:(1)若,则;(2)若=1,则+。解:()的定义域为,令,在上递增,在上递减,故函数在处取得最大值()(1)由()知当时有即,即(2)先证,令,则由(1)知;再证+,记则于是由(1)得所以+。综合,(2)得证96.(湖北文20)设函数,其中,a、b为常数,已知曲线与在点(2,0)处有相同的切线。(I) 求a、b的值,并写出切线的方程;(II)若方程有三个互不相同的实根0、,其中,且对任意的,恒成立,求实数m的取值范围。解:(I),由于曲线曲线与在点(2,0)处有相同的切线,故有,由此解得:;切线的方程:(II)由(I)得,依题意得:方程有三个互不相等的根,故是方程的两个相异实根,所以;又对任意的,恒成立,特别地,取时,成立,即,由韦达定理知:,故,对任意的,有,则:;又所以函数在上的最大值为0,于是当时对任意的,恒成立;综上:的取值范围是。98.(湖南理20)如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。()写出的表达式()设0v10,0c5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。解析:(I)由题意知,E移动时单位时间内的淋雨量为,故.(II)由(I)知,当时,当时,故。(1)当时,是关于的减函数.故当时,。(2) 当时,在上,是关于的减函数;在上,是关于的增函数;故当时,。99.(湖南理22) 已知函数() =,g ()=+。 ()求函数h ()=()-g ()的零点个数,并说明理由; ()设数列满足,证明:存在常数M,使得对于任意的,都有.解析:(I)由知,而,且,则为的一个零点,且在内有零点,因此至少有两个零点解法1:,记,则。当时,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,;所以,当时,单调递减,而,则在内无零点;当时,单调递增,则在内至多只有一个零点;从而在内至多只有一个零点。综上所述,有且只有两个零点。解法2:,记,则。当时,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点,综上所述,有且只有两个零点。(II)记的正零点为,即。(1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:来源: 当时,显然成立;假设当时,有成立,则当时,由知,因此,当时,成立。故对任意的,成立。(2)当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明:当时,显然成立;假设当时,有成立,则当时,由知,因此,当时,成立。故对任意的,成立。综上所述,存在常数,使得对于任意的,都有.100.(江苏17)请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm.(1)若广告商要求包装盒侧面积S(cm)最大,试问x应取何值?(2)若广告商要求包装盒容积V(cm)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【解】(1)根据题意有(0x30),所以x=15cm时包装盒侧面积S最大.(2)根据题意有,所以,当时,所以,当x=20时,V取极大值也是最大值.此时,包装盒的高与底面边长的比值为.即x=20包装盒容积V(cm)最大, 此时包装盒的高与底面边长的比值为解析:本题主要考查空间想象能力、数学阅读能力及运用数学知识解决实际问题的能力、建立数学函数模型求解能力、导数在实际问题中的应用,中档题.101.(江苏19)已知a,b是实数,函数 和是的导函数,若在区间I上恒成立,则称和在区间I上单调性一致.(1)设,若函数和在区间上单调性一致,求实数b的取值范围;(2)设且,若函数和在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.答案:因为函数和在区间上单调性一致,所以,即即实数b的取值范围是由若,则由,和在区间上不是单调性一致,所以.;又.所以要使,只有,取,当时, 因此当时,因为,函数和在区间(b,a)上单调性一致,所以,即,设,考虑点(b,a)的可行域,函数的斜率为1的切线的切点设为则;当时,因为,函数和在区间(a, b)上单调性一致,所以,即,当时,因为,函数和在区间(a, b)上单调性一致,所以,即而x=0时,不符合题意, 当时,由题意:综上可知,。解析:本题主要考查单调性概念、导数运算及应用、含参不等式恒成立问题,综合考查、线性规划、解二次不等式、二次函数、化归及数形结合的思想,考查用分类讨论思想进行探索分析和解决问题的综合能力.(1)中档题;(2)难题.102.(江西理19)设.(1)若在上存在单调递增区间,求的取值范围;(2)当时,在上的最小值为,求在该区间上的最大值.【解析】(1)在上存在单调递增区间,即存在某个子区间 使得.由,在区间上单调递减,则只需即可。由解得,所以,当时,在上存在单调递增区间.(2)令,得两根,.所以在,上单调递减,在上单调递增当时,有,所以在上的最大值为又,即所以在上的最小值为,得,从而在上的最大值为.103.(江西文18)如图,在交AC于 点D,现将(1)当棱锥的体积最大时,求PA的长;(2)若点P为AB的中点,E为解:(1)设,则 令 则单调递增极大值单调递减由上表易知:当时,有取最大值。证明:作得中点F,连接EF、FP,由已知得: 为等腰直角三角形,所以.105.(辽宁理21)已知函数(I)讨论的单调性;(II)设,证明:当时,;(III)若函数的图像与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:(x0)0解:(I) (i)若单调增加. (ii)若且当所以单调增加,在单调减少. (II)设函数则当.故当, (III)由(I)可得,当的图像与x轴至多有一个交点,故,从而的最大值为不妨设由(II)得从而由(I)知, 107.(全国理21)已知函数,曲线在点处的切线方程为。()求、的值;()如果当,且时,求的取值范围。解:(),由于直线的斜率为,且过点,故即解得,。()由()知,所以。考虑函数,则。(i)设,由知,当时,。而,故当时,可得;当x(1,+)时,h(x)0从而当x0,且x1时,f(x)-(+)0,即f(x)+.(ii)设0k0,故 (x)0,而h(1)=0,故当x(1,)时,h(x)0,可得h(x)0,而h(1)=0,故当x(1,+)时,h(x)0,可得 h(x)0)在区间上单调递增,在区间上单调递减,则=A3 B2 C D【答案】C6.(山东理9)函数的图象大致是【答案】C7.(全国新课标理5)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线上,则=(A) (B) (C) (D)【答案】B8.(全国大纲理5)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于A B C D【答案】C9.(湖北理3)已知函数,若,则x的取值范围为A BC D【答案】B10.(辽宁理4)ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=,则(A) (B) (C) (D)【答案】D11.(辽宁理7)设sin,则(A) (B) (C) (D)【答案】A12.(福建理3)若tan=3,则的值等于A2 B3 C4 D6 【答案】D13.(全国新课标理11)设函数的最小正周期为,且则(A)在单调递减 (B)在单调递减(C)在单调递增 (D)在单调递增 【答案】A14.(安徽理9)已知函数,其中为实数,若对恒成立,且,则的单调递增区间是(A) (B)(C) (D)【答案】C二、填空题15.(上海理6)在相距2千米的两点处测量目标,若,则两点之间的距离是 千米。 【答案】16.(上海理8)函数的最大值为 。【答案】17.(辽宁理16)已知函数=Atan(x+)(),y=的部分图像如下图,则 【答案】18.(全国新课标理16)中,则AB+2BC的最大值为_【答案】19.(重庆理14)已知,且,则的值为_【答案】20.(福建理14)如图,ABC中,AB=AC=2,BC=,点D 在BC边上,ADC=45,则AD的长度等于_。【答案】21.(北京理9)在中。若b=5,tanA=2,则sinA=_;a=_。【答案】22.(全国大纲理14)已知a(,),sin=,则tan2= 【答案】23.(安徽理14)已知 的一个内角为120o,并且三边长构成公差为4的等差数列,则的面积为_.【答案】24.(江苏7)已知 则的值为_【答案】三、解答题25.(江苏9)函数是常数,的部分图象如图所示,则f(0)= 【答案】26.(北京理15)已知函数。()求的最小正周期:()求在区间上的最大值和最小值。解:()因为所以的最小正周期为()因为于是,当时,取得最大值2;当取得最小值1.27.(江苏15)在ABC中,角A、B、C所对应的边为(1)若 求A的值;(2)若,求的值.本题主要考查三角函数的基本关系式、两角和的正弦公式、解三角形,考查运算求解能力。解:(1)由题设知,(2)由故ABC是直角三角形,且.28.(安徽理18)在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.()求数列的通项公式;()设求数列的前项和.本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力.解:(I)设构成等比数列,其中则 并利用(II)由题意和(I)中计算结果,知另一方面,利用得所以29(福建理16)已知等比数列an的公比q=3,前3项和S3=。(I)求数列an的通项公式;(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想,满分13分。 解:(I)由解得所以(II)由(I)可知因为函数的最大值为3,所以A=3。因为当时取得最大值,所以又所以函数的解析式为30.(广东理16)已知函数(1)求的值;(2)设求的值解:(1); (2)故31.(湖北理16)设的内角A、B、C、所对的边分别为a、b、c,已知()求的周长 ()求的值本小题主要考查三角函数的基本公式和解斜三角形的基础知识,同时考查基本运算能力。(满分10分)解:()的周长为 (),故A为锐角,32.(湖南理17)在ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC()求角C的大小;()求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小。解析:(I)由正弦定理得因为所以(II)由(I)知于是取最大值2综上所述,的最大值为2,此时33.(全国大纲理17) ABC的内角A、B、C的对边分别为a、b、c己知AC=90,a+c=b,求C 解:由及正弦定理可得 3分 又由于故 7分 因为, 所以 34.(山东理17)在ABC中,内角A,B,C的对边分别为a,b,c已知 (I)求的值; (II)若cosB=,b=2,的面积S。解: (I)由正弦定理,设则所以即,化简可得 又, 所以 因此 (II)由得 由余弦定理 解得a=1。因此c=2又因为所以因此35.(陕西理18)叙述并证明余弦定理。解 余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦之积的两倍。或:在ABC中,a,b,c为A,B,C的对边,有证法一 如图即同理可证证法二 已知ABC中A,B,C所对边分别为a,b,c,以A为原点,AB所在直线为x轴,建立直角坐标系,则, 同理可证36.(四川理17)已知函数(1)求的最小正周期和最小值;(2)已知,求证:解析:(2)37.(天津理15)已知函数()求的定义域与最小正周期;(II)设,若求的大小本小题主要考查两角和的正弦、余弦、正切公式,同角三角函数的基本关系,二倍角的正弦、余弦公式,正切函数的性质等基础知识,考查基本运算能力.满分13分. (I)解:由, 得.所以的定义域为的最小正周期为 (II)解:由得整理得因为,所以因此由,得.所以38.(浙江理18)在中,角所对的边分别为a,b,c已知且()当时,求的值;()若角为锐角,求p的取值范围;本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力。满分14分。 (I)解:由题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论