




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵:(1); (2);(3); (4).解(1) (2) (3) (4) 2在秩是的矩阵中,有没有等于0的阶子式?有没有等于0的阶子式?解在秩是的矩阵中,可能存在等于0的阶子式,也可能存在等于0的阶子式.例如,同时存在等于0的3阶子式和2阶子式.3从矩阵中划去一行得到矩阵,问的秩的关系怎样?解 设,且的某个阶子式.矩阵是由矩阵划去一行得到的,所以在中能找到与相同的阶子式,由于,故而.4求作一个秩是4的方阵,它的两个行向量是,解设为五维向量,且,则所求方阵可为秩为4,不妨设取故满足条件的一个方阵为5求下列矩阵的秩,并求一个最高阶非零子式:(1); (2);(3).解(1)二阶子式(2) .二阶子式(3) 秩为3三阶子式6求解下列齐次线性方程组:(1) (2)(3) (4)解(1)对系数矩阵实施行变换:即得故方程组的解为(2)对系数矩阵实施行变换:即得故方程组的解为(3)对系数矩阵实施行变换:即得故方程组的解为(4)对系数矩阵实施行变换:即得故方程组的解为7求解下列非齐次线性方程组:(1) (2) (3) (4) 解(1)对系数的增广矩阵施行行变换,有而,故方程组无解(2)对系数的增广矩阵施行行变换:即得亦即(3)对系数的增广矩阵施行行变换:即得即(4) 对系数的增广矩阵施行行变换:即得即8取何值时,非齐次线性方程组(1)有唯一解;(2)无解;(3)有无穷多个解?解(1),即时方程组有唯一解.(2)由得时,方程组无解.(3),由,得时,方程组有无穷多个解.9非齐次线性方程组当取何值时有解?并求出它的解解方程组有解,须得当时,方程组解为当时,方程组解为10设问为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解解当,即且时,有唯一解.当且,即时,无解.当且,即时,有无穷多解.此时,增广矩阵为原方程组的解为 ()11试利用矩阵的初等变换,求下列方阵的逆矩阵:(1); (2).解(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省盐城市2026届九年级化学第一学期期中教学质量检测模拟试题含解析
- 离婚赡养协议书:老人赡养费用及生活照料安排
- 特定年龄段儿童教育保障离婚协议书
- 离婚财产分配与子女未来职业规划协议书
- 特定岗位劳动合同终止与员工培训费用结算合同
- 民宿租赁合同主体变更及三方权益协调协议
- 夫妻共同财产分割协议书模板定制与法律咨询
- 离婚协议签订前财产评估与分割操作合同
- 离婚财产协议书模板:专业律师协助分割财产
- 离婚配偶股份分割与财产分割及子女赡养权处理协议
- DB44-T 1661-2021 河道管理范围内建设项目技术规程
- 驾考宝典三力测试考试试题及答案
- 中医护理实践中的伦理问题研究
- 2025抗战胜利80周年现代诗歌朗诵稿(16篇)
- 琉璃瓦施工安全协议书9篇
- 不明原因肺炎病例监测、排查和管理方案2025年修订版
- 电梯大修协议合同
- 电气安全标准化班组
- 2025安全生产法律法规专题知识培训
- 整本书阅读《格林童话》导读课课件
- 酒店卫生应急预案
评论
0/150
提交评论