已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵:(1); (2);(3); (4).解(1) (2) (3) (4) 2在秩是的矩阵中,有没有等于0的阶子式?有没有等于0的阶子式?解在秩是的矩阵中,可能存在等于0的阶子式,也可能存在等于0的阶子式.例如,同时存在等于0的3阶子式和2阶子式.3从矩阵中划去一行得到矩阵,问的秩的关系怎样?解 设,且的某个阶子式.矩阵是由矩阵划去一行得到的,所以在中能找到与相同的阶子式,由于,故而.4求作一个秩是4的方阵,它的两个行向量是,解设为五维向量,且,则所求方阵可为秩为4,不妨设取故满足条件的一个方阵为5求下列矩阵的秩,并求一个最高阶非零子式:(1); (2);(3).解(1)二阶子式(2) .二阶子式(3) 秩为3三阶子式6求解下列齐次线性方程组:(1) (2)(3) (4)解(1)对系数矩阵实施行变换:即得故方程组的解为(2)对系数矩阵实施行变换:即得故方程组的解为(3)对系数矩阵实施行变换:即得故方程组的解为(4)对系数矩阵实施行变换:即得故方程组的解为7求解下列非齐次线性方程组:(1) (2) (3) (4) 解(1)对系数的增广矩阵施行行变换,有而,故方程组无解(2)对系数的增广矩阵施行行变换:即得亦即(3)对系数的增广矩阵施行行变换:即得即(4) 对系数的增广矩阵施行行变换:即得即8取何值时,非齐次线性方程组(1)有唯一解;(2)无解;(3)有无穷多个解?解(1),即时方程组有唯一解.(2)由得时,方程组无解.(3),由,得时,方程组有无穷多个解.9非齐次线性方程组当取何值时有解?并求出它的解解方程组有解,须得当时,方程组解为当时,方程组解为10设问为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解解当,即且时,有唯一解.当且,即时,无解.当且,即时,有无穷多解.此时,增广矩阵为原方程组的解为 ()11试利用矩阵的初等变换,求下列方阵的逆矩阵:(1); (2).解(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TCUWA 50058-2024 施工工地排水处理及利用技术标准
- TCECS 1345-2023 给水用高环刚钢骨架聚乙烯复合管道工程技术规程
- 2025年生物地理历史全套试卷及答案
- 铁路运输合同的法律条款分析
- 基金项目经理招聘试题及答案
- 华为招聘面试题及答案
- 互联网技术运营经理招聘题目及答案
- 国家铁路集团招聘真题及答案
- 国家融资担保基金招聘题库及答案
- 工艺整合校招面试题及答案
- 三人合租房协议合同
- 直立性低血压诊断与处理中国多学科专家共识(2024版)解读
- 各科室迎检资料盒
- GB/T 2423.17-2024环境试验第2部分:试验方法试验Ka:盐雾
- 海姆立克急救法课件(课件)
- 重庆市存量房买卖合同示范文本模板
- A型肉毒素治疗知情同意书 注射知情同意书
- 石油化工行业标准规范目录(SH)
- 山东省汽车维修工时定额(T-SDAMTIA 0001-2023)
- 2023-2024学年高中主题班会 200天大有作为-高考倒计时200天主题班会课件
- 幼儿园保温桶管理制度
评论
0/150
提交评论