制动气室的有限元分析.doc_第1页
制动气室的有限元分析.doc_第2页
制动气室的有限元分析.doc_第3页
制动气室的有限元分析.doc_第4页
制动气室的有限元分析.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

双膜片弹簧制动气室有限元分析发表时间:2007-9-18 23:23:41 编辑:zuohui2 来源: 编者按:摘要:本文运用有限元法对双膜片弹簧制动气室结构的共五种设计方案进行了强度和刚度分析,并对计算结果给出了合理的评价。为双膜片弹簧制动气室结构的设计及改进提供参考和依据。关键词:双模片. 摘要:本文运用有限元法对双膜片弹簧制动气室结构的共五种设计方案进行了强度和刚度分析,并对计算结果给出了合理的评价。为双膜片弹簧制动气室结构的设计及改进提供参考和依据。 关键词:双模片弹簧;制动气室;强度;刚度 1 前言 汽车制动气室是保证汽车行驶安全的关键部件,制动气室装配质量的好坏及气室泄漏性的检测控制是保证整车性能的重要指标。 汽车双膜片弹簧制动气室一般由前、后壳、中间结构、膜片弹簧等几部分通过轴和卡箍等连接装配而成(参看图1.1)。工作中,制动气室结构本身除了要满足强度和刚度要求外,连接件(如卡箍等)还必须有足够的连接刚度,从而保证气室的密封性。 本文对某汽车双模片弹簧制动气室结构进行了有限元分析计算,考查壳体(前、后壳)、卡箍的厚度分别取为3.0mm和3.5mm时,双模片弹簧制动气室结构在工作极限压强(1.5MPa)下的强度及刚度是否满足要求。并对计算结果给出合理的评价,为设计改进与定型提供参考依据。图1.1 双模片弹簧制动气室设计方案一结构时的三维实体模型 此篇文章来自中国热点模具网2 有限元模型建模 2.1 结构离散化 根据双模片弹簧制动气室的结构特点,采用四面体单元对其进行有限元网格划分,卡箍之间的螺栓连接采用刚性单元和梁单元模拟。 为了使本文的研究更切合气室工作中的特点,文中考虑了卡箍与壳体和中间结构之间的面接触。 本次计算考虑了卡箍、前壳及后壳的壁厚分别取为3.0mm和3.5mm时的共五种设计方案。为方便起见,将这五种设计方案分别具体描述如表1(表中同时给出了各设计方案的有限元模型网格数目)。表1 双模片弹簧制动气室结构各设计方案描述 热点模具网博客保持各设计方案的有限元网格数目基本相当,从而保证了各设计方案的有限元分析结果存在可比性。图2为方案一的有限元模型图。图2 双模片弹簧制动气室设计方案一结构时的有限元模型结论中国热点模具网2.2 材料参数 双模片弹簧制动气室结构中,卡箍所用材料为Q235钢,其最小屈服极限为235MPa;壳体所用材料为08AL钢,其最小屈服极限为275MPa;中间结构所用材料为压铸铝,其最小屈服极限大于100MPa。 计算时取钢材料的弹性模量E为208GPa,泊松比为0.3,质量密度为7.810-6/mm3;压铸铝材料的弹性模量E为105GPa,泊松比为0.34,质量密度为2.710-6Kg/mm3。 2.3 计算载荷与工况 本次分析主要为强度校核和方案比较,同时考虑了组件间的非线性接触。计算的载荷主要考虑气室内的极限压强1.5MPa,以及由此产生的气室弹簧和拉板弹簧的作用力。 3 有限元分析结果 表2列出了双模片弹簧制动气室结构五种设计方案下各组件的最大相对变形值、最大应力值及最大应力分布部位。表2 五种方案的最大相对变形、最大应力及分布部位 热点模具网各设计方案下双模片弹簧制动气室结构各组件的变形和应力分布基本一致,仅仅是数值上有所不同,因此本文只给出了方案一时的结果图。图38为方案一下双模片弹簧制动气室结构各组件的变形和应力分布图(图中应力单位为KPa,变形单位为mm)。图3 方案一时卡箍结构变形图热点模具网图4 方案一时卡箍结构应力分布云图 中国热模网首发图5 方案一时卡箍结构最大应力位置附近应力分布云图 此篇文章来自中国热点模具网图6 方案一时前壳结构应力分布云图 热点模具网论坛图7 方案一时后壳结构应力分布云图中国热模网首发图8 方案一时气室中间结构应力分布云图 热点模具网博客4 有限元分析结论 1. 五种设计方案下双模片弹簧制动气室结构各组件的变形和应力分布基本一致,仅仅是数值上有所不同。 2. 五种设计方案下双模片弹簧制动气室结构各组件的相对变形值都很小(见表2),变形值能满足要求。 3. 从卡箍结构的变形图(图3)看,前壳与中间结构间的卡箍相对变形较后壳与中间结构间的大,因此为满足气密性的目的,前壳的料厚不应盲目减小。 4. 五种设计方案中,仅设计方案二(卡箍及前壳3.5mm厚,后壳3.0mm厚)和三(卡箍、壳体均为3.5mm厚)时制动气室各组件的最大应力值低于所用材料的强度屈服极限(见表2)。其中方案二时卡箍、前壳、后壳结构的强度安全系数为1.02、1.11、1.27,而方案三时卡箍、前壳、后壳结构的强度安全系数为1.22、1.11、1.79,可见,方案三时各组件强度均有一定富余,而方案二时卡箍的强度基本没有富余。 5. 建议采用方案三的设计。同时由于本次计算考虑的气室内的气压1.5MPa为极限压强,实际使用中可能达不到该气压值,因此基于降

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论