最优化期末考试.doc_第1页
最优化期末考试.doc_第2页
最优化期末考试.doc_第3页
最优化期末考试.doc_第4页
最优化期末考试.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Definition: Convex combination Definition: Convex combination Theorem: Properties of convex setsDefinition: Convex functionsTheorem: Properties of convex functionsTheorem: First-order ConditionsTheorem: Second-order ConditionsTheorem: Second-order ConditionsQuestions: Definition: Convex programmingTheorem: Properties of convex programmingThe geometrical properties for linear programming The feasible region D for a LP is convex if D is nonempty. If there is a feasible solution, then there is at least one basic feasible solution. A feasible solution is a basic feasible one if and only if it is an extreme point of the feasible region D If a LP has optimal solutions, then at least one such solution is a basic feasible one. If a LP is feasible and bounded, then it has at least one optimal solution.?Show that the following model is convex programming ?Show that the following results ?Determine whether the following statements are true or not The linear programming is a kind of convex programming. If x* is the only optimal solution to a LP, then it is just an extreme point of the feasible region. For a LP, the optimal solution must be one of extreme points of the feasible region. For a LP, the optimal basic feasible solution must be one of extreme points of the feasible region. For a LP, if the feasible region is nonempty, then there certainly exist at least one optimal solution.对偶单纯形法The dual theorem and its consequencesTo simplify the exposition, we consider the following symmetrical dual problems*:*Remarks: for asymmetrical dual problems, the conclusions discussed are also applicableWeak DualityTheorem: The Dual TheoremTheorem: Complementary Slackness The Dual Simplex MethodTheorem: For the simplex tableau?Use the Dual Theorem to solve the following LP :Where it is known that the optimal sol

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论