初三数学专题复习10探究性问题_第1页
初三数学专题复习10探究性问题_第2页
初三数学专题复习10探究性问题_第3页
初三数学专题复习10探究性问题_第4页
初三数学专题复习10探究性问题_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初三数学 阅读理解型问题及填空选择压轴题(5.5)1. (2015南通)关于x的一元二次方程的两个不相等的实数根都在1和0之间(不包括1和0),则a的取值范围是 2.(2015泰州)点、在反比例函数的图像上,若,则的范围是 4.已知二次函数,当时,的最大值为5,则实数的值为 .5.函数和的图象关于y轴对称,我们定义函数和相互为“影像”函数。类似地,如果函数和的图象关于y轴对称,那么我们定义函数和互为“影像”函数。(1)请写出函数y=2x-3的“影像”函数: ;(2)函数 的“影像”函数是;(3)如果,一条直线与一对“影像”函数和的图象分别交于点A、B、C(点A、B在第一象限),如果CB: BA=1:2,点C在函数的“影像”函数上的对应点的横坐标是1,求点B的坐标。5. (2015扬州10分)平面直角坐标系中,点的横坐标的绝对值表示为,纵坐标的绝对值表示为,我们把点的横坐标与纵坐标的绝对值之和叫做点的勾股值,记为:,即.(其中的“+”是四则运算中的加法)(1)求点,的勾股值、;(2)点在反比例函数的图像上,且,求点的坐标;(3)求满足条件的所有点围成的图形的面积.6 对某一个函数给出如下定义:若存在实数M0,对于任意的函数值y,都满足-MyM,则称这个函数是有界函数在所有满足条件的M中,其最小值称为这个函数的边界值例如,下图中的函数是有界函数,其边界值是1(1)分别判断函数y=(x0)和y=x+1(4x2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=x+1(axb,ba)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3) 将函数y=x2(1xm,m0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足t1?7. (2015扬州)如图,已知ABC的三边长为,且,若平行于三角形一边的直线将ABC的周长分成相等的两部分,设图中的小三角形、的面积分别为,则的大小关系是 (用“”号连接). 8. (2015常州10分)设是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与的面积相等(简称等积),那么这样的等积转化称为的“化方”(1)阅读填空如图,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形如图,请用尺规作图作出与平行四边形等积的矩形(不要求写具体作法,保留作图痕迹) (3)解决问题三角形的“化方”思路是:先把三角形转化为等积的 (填写图形名称),再转化为等积的正方形如图,ABC的顶点在正方形网格的格点上,请作出与ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算ABC面积作图)(4)拓展探究n边形(n3)的“化方”思路之一是:把n边形转化为等积的n1边形,直至转化为等积的三角形,从而可以化方如图,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图)9已知抛物线y=k(x+1)(x)与x轴交于点A,B,与y轴交于点C,则能使ABC为等腰三角形的抛物线的条数是() A2B3C4D510.(2015盐城12分)知识迁移我们知道,函数的图像是由二次函数的图像向右平移m个单位,再向上平移n个单位得到.类似地,函数的图像是由反比例函数的图像向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数的图像可以由函数的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 灵活运用如图,在平面直角坐标系xOy中,请根据所给的的图像画出函数的图像,并根据该图像指出,当x在什么范围内变化时,?实际应用某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为1.新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为;若在(4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论